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Abstract—The tools used for assessment of rotor angle stability
should be able to estimate the domain of attraction and the
ensuing control laws which would aid in enhancing it. The
widely used energy function formulations have limitations in
being extended for lossy N-machines owing to the presence of
transfer conductances obtained due to the modeling approaches
used in transient stability studies. This problem is akin to the
N-body problem in celestial mechanics, for which, solutions exist,
but finding analytical solutions fail beyond the two body case. The
dynamics of the N-body system motivates the authors to assert
that integrability and synchronization can exist independently.
The major contribution of the paper is the application of
the Watanabe-Strotgatz theory for oscillators to the N-machine
system and prove that integrability of the system can be achieved
only at certain extremes of the transfer conductances, but is
generically, not achievable.

Index Terms—constants of motion, energy function, integra-
bility, transfer conductance, Watanabe-Strotgatz theory

I. INTRODUCTION

THE dynamics of a power system is extremely complex
which involve interactions between its three components:

generation, transmission and distribution. The interactions
between the mechanical power input and the electrical power
demand determine the dynamics of the generator which is
governed by the swing equation. Solutions of this equation
are analyzed to check for any violations in the rotor angles
of the generators. The equal area criterion is a tool used
for single machine infinite bus structure whereas assessment
of the stability of multi-machine power systems (MMPS)
involves two approaches: the time domain solutions and the
Lyapunov based direct methods. The former approach fails
to provide sound stability margins and tools for suitable
sensitivity analysis [1]. Though this drawback is overcome by
the direct methods, constructing good Lyapunov functions(LF)
for MMPS has been challenging. Often, one has to use
experience or physical insights (e.g., the energy function
(EF) for electrical and mechanical systems) to search for an
appropriate LF [2]. There have been several papers which
have used the concept of EF to assess rotor angle stability of
MMPS. Though the EF has served as the LF for two machines,
extension to N-machine case is elusive owing to the presence
of transfer conductances (TC).

For MMPS, formation of an EF is possible only when
TC are negligible. Presence of TC makes the integral of the
potential energy term path dependent whereas, formation of
EF will be possible only if this integral is path independent. EF
formulations are possible only when the dynamical equations
governing them are integrable and presence of TC makes
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the EF non-integrable. The notion of integrability implies
that the governing dynamical equations need to be solved
in order to achieve global solutions and the most natural
procedure to come up with solutions is to find the constants of
motion (CoM). A N-dimensional system needs (N-1) CoM for
integrability. As it’s not feasible to find the required number
of CoM for N > 2, such systems are non-integrable. A
motivating parallel can be drawn from the N-body problem of
celestial mechanics. As quoted in [3], solutions to the N-body
problem exist. However, analytically solving the dynamical
equations is difficult unless integrability helps in.

Apart from assessing stability of system’s equilibrium point,
the purpose of forming LF is to also find suitable con-
trollers to attain stability, thereby aiding in the enhancement
of the domain of attraction. Many control approaches have
asserted that the integrability condition needs to be satisfied
so as to derive globally convergent stabilizing controllers for
MMPS [4]. However, satisfying the integrability condition
will remain a holy grail problem for lossy MMPS when
the tool to evaluate the stability of its equilibrium points
is the EF. Though researchers have attempted to extend the
EF formulations for two machines and beyond, the issue of
TC hampers generalization to N-machines [5]. Despite the
prolonged efforts made by authors to address non-integrability,
there has been no analytical proof to show that N-machine
systems are non-integrable. This brings in the first contribution
of the paper, wherein, using the Watanabe-Strotgatz (WS)
theory, non-integrability of N-machine system is proved by
considering the entire gamut of dynamics of N-machines.

The inability to account for TC is due to the limita-
tions in modeling of loads which simplifies the formation
of the LF. In network reduced models (NRM), the loads
are treated as constant impedances and are merged into a
network where only generator internal nodes are retained.
The load impedances appear as TC in the reduced network
which hamper the evaluation of EF beyond two machines.
Though the structure preserving models (SPM) include de-
tailed load and generator dynamics, this approach also uses
certain assumptions in evaluating the EF [2]. Hence, forming
EF for lossy MMPS will remain pervasive. Irrespective of
whether EF are integrable or non-integrable, MMPS continue
to exist in synchronism. A supporting analogy can be drawn
from the N-body problem of celestial mechanics, wherein the
celestial bodies continue to exist in synchrony. The second
contribution of this work is to reiterate that even though
the EF for lossy MMPS is not integrable, N-machines can
be synchronized. As proposed in [6], there is no relation
between line losses and system instability. Integrability is
not mandatory for synchronization. Global solutions to
such systems are infeasible, however, numerical procedures
to assess stability domains exist.
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The existence of synchrony of N-machines despite the
presence of TC urges to explore a different approach in un-
derstanding the underlying phenomenon. In literature, this has
been envisaged by modeling of N-machines as an ensemble
of Kuramoto oscillators [7]. The Kuramoto model symbolizes
the transient stability problem as a synchronization problem
by modeling the machines as phase oscillators. The region
of interest for rotor angle stability is the cohesive region,
wherein, the oscillators would be phase locked with a region
of arc on the unit circle (which corresponds to relative rotor
angles < 1800). The model assesses the stability of N-machine
with TC and explains that there exists a critical value Kcr of
the coupling co-efficient K below which the system remains
in asynchrony and as K → 1, oscillators are phase locked.
The value of Kcr is proportional to the spread of the phase
angles of the oscillators and is dependent on the value of TC.
Their relationship is explored to show the effect of using a
conservative approach in forming a LF and its impact on the
domain of attraction which brings in the third contribution of
the paper.

The paper is organized as follows: Section II reviews the
modeling issues in assessment of transient stability of MMPS
using EF as a tool. A brief note on integrability is presented.
Section III revisits the synchronization approach of the Ku-
ramoto model and analyzes the effect of TC on Kcr. Section
IV describes the behavioural properties of Kuramoto model
and describes the general procedure for forming CoM for N
oscillators with the help of WS theory, thereby, illustrating the
regions of integrability. Section V summarizes the discussion
and proposes the conclusive remarks and future scope.

II. TRANSIENT STABILITY ASSESSMENT: MODELING
ISSUES

The assessment of rotor angle stability is extremely crucial
to measure the effect of large disturbances on the system. In
a power network comprising of n generator nodes, and m
load nodes, for transient stability assessment, rotor dynamics
of generators need to be monitored, which can be represented
by swing equations of generator i as:

Miδ̈i = Pmi−E2
iGii−Diδ̇i−Pei, for i ∈ {1, · · · , n} (1)

where, internal voltage of generator Ei > 0, mechanical
power input Pmi > 0, inertia Mi > 0, damping constant
Di > 0. The electrical power output Pei is given as:

Pei =
n∑
j=1

|Ei||Ej |[Re(Yij)cos(δi − δj) + Im(Yij)[sin(δi − δj)]

=
n∑
j=1

|Ei||Ej ||Yij |sin(δi − δj) + ψij ] (2)

where |Yij | =
√
G2
ij +B2

ij , ψij = arctan(Gij/Bij) (3)

For SPM, Pei would represent the power flow in the trans-
mission lines having admittance of Gij + jBij . For NPM,
Kron reduction is employed wherein only generator nodes
are retained and all the load nodes are merged in the reduced

admittance matrix, Yred(orYij). Gij represents the TC be-
tween generator i and generator j. If Gij = 0, (ψij = 0),
then the line is treated as lossless, else it is a lossy line. Pei
would then represent the power flow exchanged between the
machines which is termed as generator flows (GF). Owing to
the different modeling techniques of the loads, evaluation of
Pei serves as a hindrance in formation of EF.

In NRM, the load impedances appear as ψij which account
for the TC between the generators. The major difficulty
in the analysis of systems with TC is that a closed form
expression for the total system energy cannot be obtained.
The SPM incorporates detailed dynamic models of loads, yet
path dependent integrals are neglected in evaluation of the
EF. Though, EF is a powerful tool in analyzing stability, the
inherent modeling of power system in evaluating the first
swing poses a problem in their evaluation as lossy systems
are not integrable. Formulating an EF or Hamiltonian with
TC for a N-machine is an un-tractable problem similar to the
N-body problem owing to its non-integrability. The concept
of integrability and its relation to synchronization is explained
in the next section.

A. Integrability and Synchronization
A separate section on integrability is implored to address the
obsession of control community to the idea of existence of
integrability for formation of suitable control law in order to
achieve stability. Given a dynamical system governed by

Ẋ = f(X) (4)

with an initial condition X(0), integraility implies solving
these equations to obtain the state of the system at time t, i.e.
X(t) given X(0). This indicates that integrability involves
finding global solutions. According to Poincare, integrating
a differential equation is finding a finite expression for the
general solution, possibly multivalued, in a finite number of
functions [8]. The word finite indicates that integrability is
related to a global rather than local knowledge of the solution.
Integrability is the property of equations for which all local
or global solutions can be obtained either explicitly from
the solutions or implicitly from the CoM [9]. Since an EF
approach is generally followed to assess stability, a N-body
system needs (N − 1) CoM for integrability. With dissipative
nature of systems, solving dynamical equations analytically is
a challenge beyond the two body problem as its difficult to
find the required number of CoM for N > 2. Hence, its said
that such systems are non-integrable. The authors propose to
reiterate that solutions exist for three machines and beyond
but they cannot be found by using EF as a tool.

Integrability is a rare phenomenon, a typical dynamical
system is non-integrable [10]. In the context of power systems,
integrability is associated with the EF used to assess stability
of MMPS. The effect of the presence of TC is to act as a
perturbation to the otherwise, conserved system. Analytically
procedures of solving this integral for lossy MMPS fail as
the integral becomes path dependent and its value would
change with change in the fault location. Hence, energy
integrals fail to provide global solutions and systems with
TC are non-integrable. Nevertheless, in a realistic scenario,
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TC exist in the system and yet, a N-machine system remains
synchronized. This raises questions on the relation between
synchronization and integrability. If a system is not integrable,
does it imply that it is unstable? Probably not, as supported by
the discussion above. Maybe, a different modeling approach
is needed to understand the underlying phenomena. This is
achieved by modeling N-machines as oscillators, an approach,
which has widely been used and is briefed in the next section.

III. MACHINES AS KURAMOTO OSCILLATORS

The dynamics of the rotor of the generator described by
the swing equation, gives a balance between the mechanical
output of the rotor and the coupling of this output to the
other nodes of the grid. The rotational properties of generators
help in visualizing them as oscillators whose dynamics are
governed by the Kuramoto model. The analogy between
the swing equation and the oscillator dynamical equation
is derived from the fact that both are a consequence of
Newton’s second law and are related to the active power flow.
Solutions to Kuramoto model results in estimating synchro-
nization of oscillators whereas solutions to swing equations
involve determination of rotor angle stability. The motivation
to symbolize machines as oscillators is to view phase locking
of oscillators as synchronization of the rotor angles. The
equivalence between the two dynamical equations has been
explored by [7].

Each oscillator oscillates independently at its natural fre-
quency while the coupling tends to synchronize it to all others.
When the coupling is weak, oscillators run incoherently
whereas for coupling strength beyond a certain threshold,
oscillators are synchronized with each other. The governing
equations of the coupled Kuramoto oscillator as shown in
Fig.1 are:

θ̇i = ωi −
N∑
j=1

Kijsin(θi − θj), for i ∈ {1, · · · , N} (5)

Fig. 1: Kuramoto model of N coupled oscillators
Kij is a matrix comprising of the coupling weights. In order

to apply the Kuramoto model in power system parlance, the
relationship between the power network model and a first-
order model of coupled oscillators is exploited. The singular
perturbation analysis is applied to show the congruity between
(1) and (5), assuming that the generators are overdamped
possibly due to local excitation controllers. Using the relation
(6) and (7) to represent the effective power input to generator
i and the coupling weights representative of power transferred
between generator i and j respectively, (1) would get modified
to (8) wi ≡ (Pmi − E2

i (Gii)) (6)

Pij = |Ei||Ej ||Yij | with Pii = 0 (7)

Miδ̈i = −Diδ̇i + ωi −
n∑
j=1

Pijsin(δi − δj + ψij) (8)

For small inertia over damping ratio (Mi

Di ) of generators,
singular perturbation can be applied to seperate slow and fast
dynamics of the system, then (8) reduces to,

Diδ̇i = ωi −
n∑
j=1

Pijsin(δi − δj + ψij) (9)

which captures the power system dynamics sufficiently well
during first swing. A corelation between (5) and (9) reveals
that with ψij = 0, they both are alike, where Pij plays
the same role as that of the coupling function Kij . The
relationship between ψij and Kij is described in this section
whereas the role of ψij in integrability will be discussed in
Section IV.
An intuitive representation of synchronization is brought about
by the Kuramoto mean field model (KMFM), by taking
Kij = K/N > 0, resulting in:

θ̇i = ωi −
K

N

N∑
j=1

sin(θi − θj), for i ∈ {1, · · · , N} (10)

(10) can be written in a more convenient form using the order
parameter (OP) r, the centroid of the oscillators, which is a
natural measure of synchronization and defined as:

r(ejφt) =
1

N

N∑
k=1

ejθk(t) (11)

where r measures phase coherence of the oscillators and φ
measures the average phase. Kuramoto model (10) represented
in terms of OP as:

θ̇i = ωi −Krsin(φ− θi), for i ∈ {1, · · · , N} (12)

The equivalent of TC in the KMFM is brought about by
adding a term β in the coupling function of (12). It denotes
the averaged value of the TC for oscillators.

θ̇i = ωi −Krsin(φ− θi − β), for i ∈ {1, · · · , N} (13)

In literature, (13) is also known as the non-uniform Kuramoto
model. The effect of change in K on r is depicted in Fig.2a
which shows that as β increases, more coupling strength is
needed to synchronize oscillators, resulting in an increase in
Kcr which corresponds in a way, to the stability margin/ the
region of attraction of the LF. The effect of increasing β on
Kcr is shown in Fig.2b. Kcr1 is the critical coupling strength
at β1 = 0 and Kcr2 is the critical coupling strength at β2 and
so on. With an increase in β, Kcr also increases.

(a) r vs K (b) Effect of β on Kcr

Fig. 2: Relation of r and β with K

The inferences drawn from Fig.2b are:
1) Beyond 2 machine, forming a LF with TC is infeasible,

i.e., LF cannot be formed at β2, β3....
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2) Hence, from a practical point of view, LF is always formed
at β1 = 0.

3) For e.g., if the system is operating at β2 and its stability
is analyzed at β1 = 0, then this would result in an
underestimate of the Kcr, i.e. the system sees Kcr1 and
not Kcr2, resulting in a shrinking in the etimate of domain
of attraction.

4) The larger the β, the more would be the error in the
estimate of domain of attraction.

This discussion emphasizes that LF can be formed by ne-
glecting the TC but this assumption would be at the cost of
sacrificing the estimates of region of attraction.

IV. BEHAVIOUR AND INTEGRABILITY OF KURAMOTO
OSCILLATORS

The periodic solutions of (13) fall into three categories:
in-phase, splay and incoherent. Fig.3 depicts these states
followed by their definitions:

Fig. 3: Periodic solution of Generalized Kuramoto oscillators

1) In-phase state/ synchronous state: A state in which the
interaction between the oscillators is attractive and tends
to lock them in-phase. If all the oscillators are in the
generating mode, then they are said to be phase cohesive.

2) Incoherent/ Asynchronous state: A state in which the
interaction between the oscillators is repulsive and tends
to lock them in anti-phase

3) Splay state: A state which is the most stable of the
asynchronous state.

Fig.3a shows N oscillators which are synchronized and are in
the synchronous region. Fig.3b depicts the splay (outspread)
states which are the most stable of the incoherent states,
Fig.3c. The significance of these states is highlighted as:
• The whole in-phase state is not conducive to synchroniza-

tion. The oscillators would exist in the generating mode
only above Kcr which is the phase cohesive region.

• As TC increases, the oscillators start falling apart and
spread over the unit circle, well within the phase cohesive
region. If TC increases beyond Kcr, then the oscillators
start spreading out and move towards the incoherent state.

• As the application is to assess rotor angle stability, the dy-
namics of the oscillators when they are in the synchronous
state have only been examined. Though splay states have
been discussed in literature, as they are not relevant from
machine stability point of view, they have not been explored.

• However, the dynamics at the splay states give lot of insights
into the integrability of N-machine systems as proved by the
WS theory.

Exploring the whole spectrum of the solutions of an ensemble
of N oscillators gives rise to a varied dynamics which help in
exposing the domains of integrability. The WS theory aids in
providing a full dynamical description of the Kuramoto model

of identical oscillators by reducing the dynamics to that of
three macroscopic constants along with CoM. As the notion
of integrability involves finding CoM, the WS theory finds
(N-3) CoM for an N-dimensional system, thereby reducing
the dynamical equations to three dimension. This would aid
in evaluating the system analytically. Forming a LF, L, using
these reduced co-ordinates aids in deciding the stability of the
coherent and the incoherent regions. It can be observed that
(13) can be written in the generalized form [11]:

θ̇i = g(t)cosθi + h(t)sinθi (14)

With respect to (13), the functions g(t) and h(t) in (14) are
g(t) = Krsin(φ + β) and h(t) = −Krcos(φ + β). The
ensemble of (14) can be reduced to three time dependent
variables γ,Φ and Ψ and (N − 3) constants:

γ̇ = −(1− γ2)(g(t)sinΦ− h(t)cosΦ)

γΨ̇ = −
√

((1− γ2)))(g(t)cosΦ + h(t)sinΦ)

γΦ̇ = (g(t)cosΦ− h(t)sinΦ)

(15)

where Ψ and Φ are global variables, and 0 ≤ γ ≤ 1 is
the amplitude of the harmonic force. The reduction of N-
dimensional system to three dimensional is achieved using
the transformation:

θi = Φ(t) + 2arctan
[√(1 + γ(t))√

(1− γ(t))
tan[

ϕk −Ψ(t)

2
]
]

(16)

i ∈ {1, · · · , N}

where ϕk are constants. WS have demonstrated that the set
of constants ϕk together with the solutions of (15) yields a
solution of (14) via transformation (16). Obtaining the initial
values of γ, Ψ and Φ and the constants ϕk from the initial
conditions θi are explained in [11]. Two additional constraints
in the incoherent state are imposed on the constants ϕk :

N∑
k=1

cosϕk =
N∑
k=1

sinϕk = 0 (17)

These two constants (17) along with the (N-3) CoM imposed
in the incoherent manifold make the splay state integrable.
The graphical representation of (16) is shown in Fig.4 [12].
The reduced co-ordinate variables γ and Φ are analogous to
the amplitude of the mean field r and its average phase φ
[12]. It can be seen from Fig.4 that γ = 0 corresponds to
the incoherent manifold where the phase of the oscillator is
equal to the mean field. Note that as γ increases from 0 to
1, the phases of the oscillators move from asynchronous to
synchronous regime. A similar phenomena is also observed
in the cascade failures in power grid. The line flows under
a healthy grid condition follow a Gaussian distribution (GD)
which is an assumption. Owing to distrurbances, as lines get
overloaded and tripped, the cumulative distribution of line
flows collapses from Gaussian to non-Gaussian (NG) distribu-
tion which indicates decrease in coherence or movement from
the synchronous to the asynchronous mode. Such phenomenon
has been discussed in [13] wherein, the GD of line flows
is based on the assumptions that the line flows follow the
central limit theorem. The analysis of the reduced coordinates
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of the original system using the WS theory rather, justifies this
assumption.

Fig. 4: Variation in coherence with change in γ and Φ

For the analysis of (15) it is convenient to introduce
quantities S and T

S(γ,Φ) = rsin(φ− Φ), T (γ,Φ) = −rcos(φ− Φ) (18)

which gives r2 = S2 + T 2. They can also be represented via
derivatives of a LF L(γ,Φ) in polar coordinates (γ and Ψ):

L(γ,Φ) =
1

N

N∑
k=1

log
(1− γcos(ϕ−Ψ)√

(1− γ2)

)
,

as T = (1− γ2)
∂L

∂γ
; S = −

√
(1− γ2)

γ

∂L

∂Ψ
(19)

The time derivative of L is given by:

L̇ = RKr2cosβ (20)

Depending on the sign of L̇, the stability of the reduced system
can be analyzed. For the case of linear coupling, R, K and β
are constant, then (20) implies that if:
1) cosβ < 0 ⇒ β > π/2, L decreases, 0 < γ << 1 and an

incoherent state with zero mean field r = 0 sets in.
2) cosβ > 0 ⇒ β < π/2, L grows and a fully synchronous

state with γ → 1 establishes.
3) cosβ = 0, β = π/2, splay state sets in which is the most

stable of the incoherent states. This corresponds to a full
lossy case where the system is integrable.

4) L has a minimum L = 0 at the origin γ = 0, and tends to
infinity on the unit circle γ = 1.

Fig.5 shows the regions at which synchronous, asynchronous
and integrable behaviour can be obtained. It illustrates the
transition from asynchrony to synchrony by virtue of variation
in γ. The repulsive region comprises of two modes: the chaotic
incoherent state and the stable splay state. As γ ≈ 1 and
the coupling increases beyond Kcr, frequency synchronization
and phase co-hesiveness of the oscillators is achieved. At the
border between attraction and repulsion cos(β) = 0 (assuming
K 6= 0) the system becomes integrable.

Fig. 5: Stability of the incoherent manifold

V. CONCLUSIONS AND FUTURE SCOPE

The focus of this work is to elucidate the limitations in the
assessment of rotor angle stability of lossy MMPS with EF
formulations as a tool. Global solutions to such systems are
infeasible, however, numerical procedures to assess stabil-
ity domains exist. The discussions help in putting to rest
the notion of finding integrable energy functions for lossy
MMPS. The formation of LF and thereby the control action
by neglecting the TC would result in a shrinking in the
region of attraction. The whole endeavour is to draw parallel
between the stability of the N-body problem and the lossy
MMPS, which reveals that lossy MMPS continue to remain
in equilibrium irrespective of the presence of TC. The WS
theory provides a concrete proof that lossy MMPS are non-
integrable and efforts to find energy function for such systems
would be unproductive.
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