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Abstract: The main purpose of this paper is to design a non-linear second order sliding mode control for 
transient stability of  two generator system (TGS). Second order sliding mode algorithms such as 
Twisting Algorithm (TA) and Super Twisting Algorithm (STA) have been applied and their simulation 
results are compared. The equilibrium point of TGS is maintained after the clearance of fault and the 
system is in post fault condition. Simulation results verify the proposed controller. The advantage with 
this type of control is that it does not require linearized model for its implementation and reduced 
chattering effect. 
Keywords: Chattering, higher order sliding mode control (HOSM), sliding mode control (SMC), second 
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

1. INTRODUCTION 

Power demand is increasing day by day but the available 
large scale power system is limited due to economy and 
environmental effects. So as to avoid damage and loss to the 
exisisting network, various precautions are taken. In which 
the problem of transient stabilization which occurs due to 
short circuit, sudden faults introduced in the system or 
lightening is crucial one and is of interest in research 
community. The power system is highly nonlinear and 
distributed so the control strategy  is supposed to suppress the  
instability and poorly damped power angle oscillations. 
Excitation control is one of the most favored, effective and 
economic method to improve the stability of power systems. 
Not only it enhances the power system stability, but also 
attenuates low-frequency oscillations inherent in power 
systems during transient conditions (Wagh Sushama and 
Kamath and, 2009)( Li-Ying and Jiaxin, 2009). 

Different control techniques are proposed for excitation 
control of generators such as Immersion and Invariance (I 
and I) methodology is introduced in (Wissam and Ortega, 
2011). Robust	ܪஶ control technique is proposed in ( Li-Ying 
and Jiaxin, 2009)(S.S. Ahmed and L. Chen, 1996)(S. 
Hardiansyah and J., 2006). Direct Lyapunov method in J. 
Machowsky and S. Robak, 2000) and feedback linearization 
is discussed in (A. Kazemi and M.R. Jahed, 2007)(E. Tuglie 
and S.M., 2008). Passivity and energy functions analysis is 
proposed in (Romeo Ortega and Martha Galaz, 2005)(T. 
Shen and Y. Sun, 2005). Model Predictive Control (MPC) is 
shown in (Wagh Sushma and Kamath and, 2009)(F. Borrelli 
and A. Bemporad, 2011). 

The difficulty in  application of I and I is the need to solve a 
partial differential equation and assumes all generators are 
actuated and have the same relative damping.	ܪஶ  control 

enhance the tuning of classical controllers but these were 
developed  using linear models. To take into account the 
entire operation region of generators, nonlinear control 
design techniques are more suited. Nonlinear techniques such 
as Direct Lyapunov method, feedback linearization and 
interconnection and damping assignment passivity-based 
control (IDA-PBC) and energy functions analysis are 
introduced but these controllers requires exact knowledge of 
the plant parameters and disturbances. Application of the 
feedback linearization method cost computationally 
expensive control algorithm. Almost all systems today have 
to work under  constraints and the system are multi-input and 
multi-output. So mentioned nonlinear methods lead to very 
elegant solutions, but their design procedures are complicated 
and unable to handle constraints in a systematic manner. The 
problem with model predictive control (MPC) is that it is a 
slow process whereas SMC has advantage it is robust to the 
system uncertainties and disturbances (exact knowledge of 
model is not required) and reduced order dynamics of the 
system   (R. Benayache and W. Bahloul, 2010)( Wilfrid 
Perruquetti and Jean Pierre)(V.I. Utkin). 

In this paper higher order sliding mode control (HOSM) 
technique is proposed for transient stabilization of two 
generator systems which is the extension to the single 
machine infinite bus system problem presented in (R. 
Benayache and W. Bahloul, 2010) using SOSM (SOSM is 
used for single machine infinite bus system (SMIBS)). The 
SMC approach is best known as an efficient tool to design 
robust controllers for complex high-order nonlinear dynamic 
systems operating under uncertain environment. The research 
in SMC area started by Russian engineers about 40 years ago, 
and gradually sliding mode control method has received 
much more attention from the international control 
community within the last few decades. The main advantage 
of sliding mode is low sensitivity to system parameter 
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variations and disturbances which eliminates the necessity of 
exact modeling of system. SMC reduces the system 
dimension and the complexity of feedback design and also 
restricts the dynamics to the subspace (sliding surface) of 
state space and any deviation from sliding surface results 
control action and trajectory of the system is brought back to 
slide on the chosen surface. SMC implies that control actions 
are discontinuous state functions which may easily be 
implemented by conventional power converters with ‘on-off ’ 
as the only admissible operation mode. Sliding mode control 
has been proved to be applicable to a wide range of problems 
in robotics, power system, process control, vehicle and 
motion control (Asif Sabanovic and Leonid M.)( Siew-Chong 
and Yuk-Ming)(Leonid Fridman and Jaime Moreno). 

After receiving the boost in 1990s, HOSM is introduced so as 
to avoid the drawbacks of  SMC theory  i.e. chattering effect 
(high frequency oscillations) and constrain on choosing the 
sliding variable due to relative degree ݎ equal to one  
requirement because of these drawbacks HOSM is introduced 
which acts on higher order time derivatives of the sliding 
variable instead of first time derivative in standard sliding 
modes. Higher order sliding mode controllers  are able to 
drive to zero not only the sliding variable, but also its (ݎ − 1) 
successive derivatives (ݎ௧௛order sliding mode). Chattering 
effect is significantly reduced, since the high frequency 
control switching is “hidden” in the higher derivative of the 
sliding variable. The main problem with HOSM 
implementation is increasing information demand i.e. it needs 
,ݏ ,ݏ̇ ,ݏ̈ … ,  ௥ିଵ to be available. The work done on robust exactݏ
differentiator technique can solve this problem (Wissam Dib 
and Romeo Ortega, 2011). Twisting algorithm (TA) and 
super twisting algorithm (STA) are robust non-linear second 
order sliding mode algorithms in which TA requires the first 
derivative of sliding  variable ݏ		 in its control design whereas  
the advantage of the STA  is that the knowledge of the 
derivative of the sliding  variable ݏ is not required, therefore, 
it does not demand the robust differentiator which estimates 
the higher order derivatives of sliding variable (Y. Shtessel 
and C. Edwards) (Leonid Fridman and Jaime Moreno). 

In this paper TA and STA are used for transient stabilization 
problem of two generators system. As this is the non-linear 
system, proposed control technique stabilizes the rotor angles  
 ଶ and maintained the equilibrium after clearance of faultߜ,ଵߜ
and better performance of the power system. 

This paper is organized as follows. Section 2 deals with the 
two generators system model in which each subsystem is 
represented by 3௥ௗ  order model. Basics of SMC (TA and 
STA), sliding surface and control design (using algorithms) is 
presented in Section 3. Simulation results are shown in 
Section 4 followed by Section 5 with conclusion.  

 

2. DYNAMICAL MODEL FOR TWO GENERATOR 
SYSTEM 

The problem of transient stabilization of large scale power 
system consisting of ݊ generators interconnected through 
transmission network (lossy) is discussed in (Romeo Ortega 

and Martha Galaz, 2005). The dynamics of  ݅௧௛ generator 
with excitation is given below (Equation 1): 

௜ߜ̇ = ௜ݓ

௜ݓ̇ = ௜ݓ௜ܦ− + ௜ܲ ௜ଶܧ௜௜ܩ− ௜ܧ− ෍ ௜ܻ௝ܧ௝ sin(ߜ௜ − ௝ߜ + (௜௝ߙ
௡

௝ୀଵ,௝ஷ௜

ଵܧ̇ = −ܽ௜ܧ௜ + ܾ௜ ෍ ௝ܧ cos(ߜ௜ − ௝ߜ + (௜௝ߙ
௡

௝ୀଵ,௝ஷ௜

+ ௙௜ܧ + ௜ݑ
⎭
⎪⎪
⎬

⎪⎪
⎫

 

(1) 

where, 

 

௜ܻ௝ ≅ ටܩ௜௝ଶ + ௜௝ଶܤ ௜௝ߙ  , ≅ arctan
ୋ౟ౠ
୆౟ౠ

 

ܽ௜ ≅
ଵ
்೏೔

ௗ௜ᇱݔ−ௗ௜ݔ)ெ௜௜ܤ−1] )],  ܾ௜ ≅
௫೏೔ି௫೏೔

ᇲ

்೏೔ ௜ܻ௝  

 

 ௜= rotor angleߜ

 ௜= rotor speedݓ

 ௜= quadrture axis internal voltageܧ

௜ܲ= mechanical power 

 ௜= damping coefficientܦ

 ௜= field excitation signalݑ

 ݅ ௜௜= self conductance of generatorܩ

  ௙௜= constant component of the field voltageܧ

G୧୨= conductance 

B୧୨= susceptance 

 ௗ௜= direct axis synchronous reactanceݔ

ௗ௜ᇱݔ = direct axis transient reactance 

 

In this paper the problem of transient stabilization of power 
system consisting of two generators is considered and the 
model of two generator system is shown in Fig. 1. 

 

 
Fig.1. Two Generators System 

 

Equations of the system are obtained using (1) with ݊ = 2. 
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ଵߜ̇ = ଵݓ
ଵݓ̇ = ଵݓଵܦ− + ଵܲ ଵଶܧଵଵܩ− − ଶܧଵܧܻ sin(ߜଵ − ଶߜ + (ߙ
ଵܧ̇ = −ܽଵܧଵ + ܾଵܧଶ cos(ߜଵ − ଶߜ + (ߙ + ௙ଵܧ + ଵݑ

ଶߜ̇ = ଶݓ
ଶݓ̇ = ଶݓଶܦ− + ଶܲ − ଶଶܧଶଶܩ + ଶܧଵܧܻ sin(ߜଵ − ଶߜ − (ߙ
ଶܧ̇ = −ܽଶܧଶ + ܾଶܧଵ cos(ߜଶ − ଵߜ + (ߙ + ௙ଶܧ + ଶݑ ⎭

⎪⎪
⎬

⎪⎪
⎫

 (2) 

 

Assume that the model has stable equilibrium at [ߜ௜ᇱ,  [௜ᇱܧ,0
with  ܧ௜ᇱ > 0. Assumptions on equilibrium will restrict 
หߜ௜ᇱ−ߜ௝ᇱห to be small. Also assume that line conductances are 
sufficiently small. Model considered has critical clearing time 
almost equal to zero. 

 

3. SMC OF TWO GENERATOR SYSTEM 

3.1 Basics of SOSM 

Consider an uncertain SISO nonlinear system which is 

affine in 

̇	ݔ = ,ݔ)݂ (ݐ + ,ݔ)ܾ   (3)                                                         ݑ(ݐ

ݏ = ,ݔ)ݏ  (4)                                                                            (ݐ

with  ݔ ∈ ߯ ⊂ ℝ௡  the state variable and ݑ ∈ ܷ ⊂ ℝ the input, 
such that ߯ = ݔ ∈ ℝ	|	|ݔ௜| ≤ ,	௜ெ஺௑ݔ 1 ≤ ݅ ≤ ݊ and ݑ = ݔ ∈
ℝ	|	|ݑ| ≤ ,ݔ)ݏ	.	ெ஺௑ݑ   is the output function, called sliding (ݐ
variable. f, b and s are smooth uncertain functions. The 
objective is to enforce, possibly in a finite time, the zeroing 
of the measurable sliding (or constraint) variable  ݏ = ,ݔ)ݏ  .(ݐ
By differentiating twice s, under the assumption that system 
(3) has relative degree versus s equal to 2, it leads to the 
following relationship: 

(ݐ)ݏ̈ = ,ݔ)߮ (ݐ + ,ݔ)ߛ  (5)                                               (ݐ)ݑ(ݐ

The dynamics in (5) are assumed to satisfy the following: 

0 < ௠ܭ ≤ ,ݔ)ߛ (ݐ ≤ ெܭ ,ݔ)߮|			 |(ݐ <  ଴                             (6)ܥ

where Km; KM and ܥ଴ are some positive constants. 
Essentially this is a requirement that the uncertainty levels in 
the process are bounded and that some worse case bounds on 
the uncertainty can be assumed. Let us set ݕଵ(ݐ) = ,ݔ)ݏ  it ,(ݐ
has been shown that, under sensible conditions, apart from a 
possible initialization phase, the second order sliding mode 
(SOSM) problem is equivalent to the finite time stabilization 
problem for the following uncertain second order system (R. 
Benayache and W. Bahloul, 2010)( Wilfrid Perruquetti and 
Jean Pierre): 

 
ଵݕ̇ = ଶݕ

ଶݕ̇ = ,ݔ)߮ (ݐ + ,ݔ)ߛ                                                                      ൠ                                                (7)(ݐ)ݒ(ݐ

                                                   

If system (7) has relative degree r = 2 with respect to ݕଵ =  ,ݏ
then ݒ = ݒ ,while, if r = 1 ,ݑ =  . ݑ̇

Note that (6) is formulated in input output terms. These 
conditions are satisfied at least locally for any smooth system 
(1) having a well-defined relative degree at a given point with 

,ݏ ,ݏ̇ ,ݏ̈ … , ௥ିଵݏ = 0. Then, it is possible to generate different 
kinds of algorithms (ideal twisting, sampled twisting, super 
twisting, sub-optimal...) such that the system evolve featuring 
a second order sliding mode, after a finite time, i.e. the 
trajectories lie in the second order sliding set defined by: 

ܵଶ = ݔ} ∈ ℝ௡|ݏ = ݏ̇ = 0}                                                    (8) 

The second order sliding mode (SOSM) approach (G. 
Bartolini and A. Ferrara, 1999) (Wilfrid Perruquetti and Jean 
Pierre) solves the stabilization problem for (10) by requiring 
the knowledge of ݕଵ and just the sign of 	ݕଶ. Some 
algorithms, which propose a solution to the above control 
problem, have been presented in the literature ( Wilfrid 
Perruquetti and Jean Pierre)( Bartolini and A. Ferrara 1997)   
(S. V. Emel’yanov and S. V. Korovin, 1986)(Bartolini and  
A. Ferrara, 1997). There are many SOSM algorithms such as 
TA, STA, sub optimal algorithm, drift algorithm which 
ensures second order sliding modes. In the present paper the 
focus is on the so-called  twisting and super twisting second 
order sliding mode algorithms for two generators system.  

 

a. Twisting Algorithm 

The twisting controller  is historically the first proposed  

2-sliding controller. TA requires the knowledge of ̇ݏ (Y. 
Shtessel and C. Edwards).It is defined by the formula: 

(ݐ)ݑ = (ݏ)݊݃݅ݏଵݎ− − ଵݎ								,(ݏ̇)݊݃݅ݏଶݎ > ଶݎ >0               (9) 

ଵݎ	 ,  ଶ are given byݎ

ଵݎ) + ௠ܭ(ଶݎ − ܥ > ଵݎ) − ெܭ(ଶݎ + ,ܥ ଵݎ) − ெܭ(ଶݎ >  (10)    ܥ

 

b. Super Twisting Algorithm 

The  super  twisting  algorithm has the advantage that it does 
not require any knowledge of the derivative of the sliding 
variable 	(ݏ̇) ݏ. This  algorithm can be defined by the 
following control law: 

(ݐ)ݑ = (ݐ)ଵݑ +  (11)                                                         (ݐ)ଶݑ

where ݑଵ(ݐ),ݑଶ(ݐ) are obtained as follow 

(ݐ)ଵݑ̇ = ൜−ݑ																									݅ݏ	ݑ|| > 1
|ݑ|	݅ݏ								(ݏ)݊݃݅ݏܹ− ≤ 1                                (12) 

 

(ݐ)ଶݑ = ൜−ߣ	ଵ
|ݏ|	݅ݏ																							(ݏ)݊݃݅ݏ଴|ఘݏ| > ଴ݏ

|ݏ|	݅ݏ																									(ݏ)݊݃݅ݏఘ|ݏ|ଵ	ߣ− ≤ ଴ݏ
          (13) 

 

This algorithm defines the control law, as a combination of 
two terms. The first is defined in terms of a discontinuous 
time derivative while the second is a continuous function of 
the sliding variable. The corresponding sufficient conditions 
for the finite time convergence to the sliding manifold are: 

 

ܹ > ஼బ
௄೘

, ଵଶߣ ≥
ସ஼బ௄ಾ(ௐା஼బ)
௄೘మ ௄೘(ௐି஼బ)

,				0 < ߩ ≤ 0.5                     (14) 
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where ܹ, ߩ and ߣ	ଵ are variable controller parameters,	ܥ଴ is 
positive norm bound on the smooth uncertain function, ݏ଴ is 
the boundary layer thickness, the choice of ߩ = 0.5 assures 
that sliding order 2 is achieved (R. Benayache and W. 
Bahloul, 2010) (G. Bartolini and A. Ferrara, 1999)(Wilfrid 
Perruquetti and Jean Pierre). 

 

3.2 Sliding Variable and Control Design for TGS 

 . are desired power angles of machines	ௗଶߜ	݀݊ܽ	ௗଵߜ

Let us define sliding surface ݏଵ	and ݏଶ for given two 
generator system as follows: 

ଵݏ	 = ଵߜ)ଵ݌ − (ௗଵߜ + +ௗଵ൯ߜ̇−ଵߜଵ൫̇ݍ ଵߜ̈)ଵݎ −   ௗଵ)           (15)ߜ̈

ଶݏ	 = ଶߜ)ଶ݌ − (ௗଶߜ + +ௗଶ൯ߜ̇−ଶߜଶ൫̇ݍ ଶߜ̈)ଶݎ −  ௗଶ)           (16)ߜ̈

where 	݌ଵ,ݍଵ, ,ଵݎ  ଶ are obtained using Routh-Hurwitzݎ,ଶݍ,ଶ݌
criterion. Here the task is to generate a second order sliding 
mode  on the  second  order  sliding  manifold given by  the  
equalities:ܵ	 = 	 ܵ̇ = 	0 

௜ݏ̇			௜ and its first time derivativeݏ	 	 for ݅ = ,2	݋ݐ	1 ݈ =
݅)	2	݋ݐ	1 ≠ ݈) is given by: 

௜ݏ	 = ௜ߜ)௜݌ − (ௗ௜ߜ + +ௗ௜൯ߜ̇−௜ߜ௜൫̇ݍ ௜ߜ̈)௜ݎ −  ௗ௜)                (17)ߜ̈

௜ݏ̇ = ෤௜ߙ + ௜ݑ෨௜ߚ 																																																	                         (18) 

 

where, 

෤௜ߙ = +ௗ௜൯ߜ̇−௜ݓ௜൫݌ ௜ݓ௜൫̇ݍ − +ௗ௜൯ߜ̈ ௜ݓ௜̇ܦ−௜൫ݎ −
௜ܧ௜(−ܽ௜ܧ௜௜ܩ2 + ܾ௜ܧ௟ cos(ߜ௜ − ௟ߜ + (ߙ + (௙௜ܧ ∓
௟ܧ௜ܧܻ̇ sin(ߜଵ − ଶߜ + ∓(ߙ ௟ܧ௜̇ܧܻ sin(ߜଵ − ଶߜ + (ߙ ∓
௟ܧ௜ܧܻ cos(ߜଵ − ଶߜ + −(௟ݓ−௜ݓ)(ߙ  ሸௗ௜൯                           (19)ߜ

෨௜ߚ =  ௜                                                                        (21)ܧ௜ݎ2−

 

The final controller is designed using linearizing controller 
coupled to a second order sliding mode. 

௜ݑ = ෤௜ߙ−)෨௜ିଵߚ +  ௜)                                                           (22)ݒ

The term  −ߚ෨௜ିଵߙ෤௜  is called as equivalent control (V. I. 
Utkin). As it is not able to cancel all nonlinearities, to 
overcome this effect second order sliding mode is introduced.  

Assuming ߜଵ and ߜଶ and their first and second time 
derivatives are bounded. Also assume that 	ܧଵ and ܧଶ are 
bounded. 

Now apply twisting and super twisting algorithms to the 
given system: 

a. Twisting Algorithm 

 ଶ required in the system using TA are obtained asݒ  ଵ andݒ
follow: 

ଵݒ = −ܿଵ(ݏ)݊݃݅ݏ − ܿଶ(23)                                          (ݏ̇)݊݃݅ݏ 

ଶݒ = −ܿଷ(ݏ)݊݃݅ݏ − ܿସ(24)                                          (ݏ̇)݊݃݅ݏ                                         

where  ܿଵ > ܿଶ >0  & 	ܿଷ > ܿସ >0. 

 

b. Super Twisting Algorithm 

 ଶ required in the system using STA are obtained asݒ  ଵ andݒ
follow: 

ଵݒ = ଵଵݒ +  ଵଶ                                                                   (25)ݒ̇

with 

ଵଵݒ = 	−ܿଵ|ݏ|ఘ݊݃݅ݏ(ݏଵ)                                                     (26) 

ଵଶݒ̇ = −ܿଶ݊݃݅ݏ(ݏଵ)                                                            (27) 

 

ଶݒ = ଶଵݒ +  ଶଶ                                                                   (28)ݒ̇

with 

ଶଵݒ = 	−ܿଷ|ݏ|ఘ݊݃݅ݏ(ݏଶ)                                                     (29)   

ଶଶݒ̇ = −ܿସ݊݃݅ݏ(ݏଶ)                                                            (30) 

where ܿଵ, ܿଶ, ܿଷ	ܽ݊݀		ܿସ are positive constants. 

With proper choice of ܿଵ, ܿଶ, ܿଷ	ܽ݊݀		ܿସ,in finite time 
 .R) (ଶ=0ݏ̇	= ଶݏ	=ଵݏ̇	=ଵݏ).ଶ converge to zero i.eݏ̇	& ଶݏ	,ଵݏ̇	,ଵݏ
Benayache and W. Bahloul, 2010) (Y. Shtessel and C. 
Edwards) (Wilfrid Perruquetti and Jean Pierre). 

 

4. SIMULATION RESULTS 

The second order sliding mode control is applied to two 
generator system shown in Fig. (1) and simulated using 
MATLAB Simulink. 

The two algorithms TA and STA are implemented & 
compared. The sequence of fault introduction and 
stabilization is given as follow: The system is in pre fault 
state. A fault is introduced at ݐ =  and is cleared after ݏ2
௖௟ݐ =  Then the system is in post fault-state (faulty line .ݏ50݉
is removed). The parameters of the system given in (1) is 
shown in Appendix A. Rotor angle, angular frequency, 
quadrture axis internal voltage, excitation control and sliding 
variable are considered. The results are as follow:  

Simulation Results using TA: 

 
Fig. 2. Variation of rotor angle delta with Twisting SMC 
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Fig. 3. Variation of angular frequency with Twisting SMC 

 

 

 

 
Fig. 4. Variation of Quadrture Axis Internal Voltage  with       
  Twisting SMC 

 

 
Fig. 5. Variation of  Excitation Control with Twisting SMC 

 
Fig. 6. Sliding Variable ݏଵ,  ଶ with Twisting SMCݏ

 

Simulation Results Using STA 

 

 
Fig. 7. Variation of rotor angle delta with Super-twisting 
   SMC 

 
 

Fig. 8. Variation of angular frequency  with Super-twisting 
   SMC 
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Fig. 9. Variation of Quadrture Axis Internal Voltage  with 
  Super-twisting SMC 

 

 
Fig. 10. Variation of  Excitation Control with Super-twisting 
   SMC 

 

 
Fig. 11. Sliding Variable ݏଵ,  ଶ with Super-twisting SMCݏ

In this paper algorithms are compared. Simulation results of 
TGS are shown above Fig. 2 to Fig. 11 using TA and STA. 
Equilibrium is achieved using both algorithms but there are 
some differences. Settling time of power angles is less for 
STA as compared to TA i.e. post fault oscillation damping is 
better in STA as shown in Fig. 2 and Fig. 7. Excitation 
control values ݑଵ,ݑଶ are near to zero with STA after 
equilibrium is achieved Fig. 10, also chattering effect is 
considerably reduced in STA. Sliding Variables ݏଵ,  ଶ andݏ

,ଵݏ̇ ଵݏ	).ଶ are almost zero i.eݏ̇ = ଶݏ = ଵݏ̇ = ଶݏ̇ = 0) in STA, 
which means second order sliding mode is achieved in finite 
time. So proposed algorithms improve the transient response 
and also robust to disturbances and parameter uncertainties. 
From above plots, new equilibrium points are: 

For TA: 

Machine-1:[1; 0; 1;0]                  [1.025; 0; 1.01] 

Machine-2:[1.15; 0; 1.08]           [1.13; 0; 1.09] 

For STA: 

Machine-1:[1; 0; 1:00]                [1:02; 0; 1:03] 

Machine-2:[1.15; 0; 1.08]           [1.16; 0; 1.07] 

 

5. CONCLUSION 

In this paper nonlinear SOSM algorithms TA and STA have 
been implemented on two generator system and their 
comparison is done . Both algorithms are able to stabilize the 
transients in power system due to faults introduced in the 
system. Chattering is also reduced in STA as compared to 
TA. The results show that STA is better than TA. Overall 
transient response is improved. More advancements in 
HOSM control (3௥ௗ  order & more) can be implemented 
which will result in reduced chattering (high frequency 
oscillations) and can be extended to more than two machine 
system ( multi-machine system). 
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Appendix A. PARAMETERS OF TGS 

 
Symbol Pre-fault Fault Post-fault 
 ଵ 0.2 0.2 0.2ܦ
 ଶ 0.2 0.2 0.2ܦ
ଵܻ 54.6185 59.6954 51.2579 
ଶܻ 39.0132 42.6396 36.6127 
ଵܲ  52.2556 52.2556 52.2556 
ଶܲ  48.4902 48.4902 48.4902 

ଵଵܩ  30.7851 34.1891 28.9008 
ଶଶܩ  19.0704 17.1830 20.9008 
ܽଵ 17.72 19.1996 16.7255 
ܽଶ 14.606 15.1217 14.2937 
ܾଵ 11.834 12.9340 11.1059 
ܾଶ 10.032 10.9645 9.4147 
 ௙ଵ 5.8158 5.8158 5.8158ܧ
 ௙ଶ 7.9268 7.9268 7.9268ܧ
 0.5430 0.4892 0.5225 ߙ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2014 ACODS
March 13-15, 2014. Kanpur, India

1060


