
International Conference on Science and Technology 2015, RMUTT
Jumbling- Salting: An Improvised Approach for

Password Encryption

Prathamesh P. Churi
Masters in Information Technology

Shah and Anchor Kutchhi Engineering College
Mumbai, India.

prathamesh.churi@gmail.com

Vaishali Ghate, Kranti Ghag
Assistant Professor,

Shah and Anchor Kutchhi Engineering College
Mumbai, India.

vaishalighate@yahoo.co.in, sakec.krantig@gmail.com

 Abstract— This paper presents an improvised approach for
plain text password encryption in the server’s database. One of
the major aspect of password protection issue is to secure it by
means of encryption process. In cryptanalysis, a dictionary
attacks or brute force attacks are the most common ways of
cracking passwords. A new approach for improvising the
scheme of password encryption is using the process of
Jumbling-Salting (JS). In order to augment the security aspect
regarding passwords, we are devising JS algorithm which
prevents dictionary and brute force attacks by increasing the
length of cipher text in a considerable limit. In this algorithm,
the jumbling process selects characters from pre-defined
character set and adding them into the plain password using
mathematical modulus (%) function; salting comprises of
adding a random string into jumbled password. Ultimately
AES block is implemented which obtains a fixed length
password which is stored in the server’s database. Randomized
version of JS algorithm ensures that there is increase in time to
crack the cipher text password, by forming a highly secured
version of encrypted password.

Keywords- Encryption, encryption , Algorithm , JS,
Cryptography, password.

I. INTRODUCTION
According to Bruce Schneider “Security is a process, not

a product.”[1]. This famous quote is well echoed by the
phenomenon that although there exists numerous amount of
security techniques for today, none of them can single-
handedly address all the security goals of an organization.

Password is being most common authentication
technique which provides the claimant access to system
resources. Being the simplest form of authentication
technique used, the probability of cracking the password
using different combinations is considerably high [2].
Although encryption process on passwords provides partial
solution to prevent such attacks, there exists “brute force
attack” or “dictionary attack” which has proven this
statement to be inefficacious. To overcome the problem of
securing encrypted password, we are developing JS
(Jumbling –Salting) technique which will increase the length
of cipher text by jumbling additional characters to the
original string of password.

JS algorithm majorly has of two processes viz. jumbling
and salting. In the jumbling process, the password undergoes
“addition”, “selection” and “reverse” sub-processes.
Addition process is generates a value required for
determining the number of characters to be added to the plain
text password. Selection deals with selecting random
characters to be added to the password from predefined
character set. In general there are umpteen number of
character set in the server. Selection of characters from
different character set is also made random. Reverse
process reverses the output of selection process based on
some pre-defined condition. The condition can be
implemented by any mathematical techniques like even odd,
prime number or condition of divisibility etc. In salting part,
random salt is added to the jumbled string of password.
Selection of salt is based on timestamp value which is
determined when the user creates his account [2]. Finally,
jumbled and salted password is given to the predefined AES
algorithm procedure.

Randomized algorithms are particularly effective when
attacker who deliberately tries to perform dictionary or brute-
force attack [2]. It is said that randomness is ubiquitous in
cryptography. The processes involved in JS algorithm are
randomized; hence we can achieve "Randomness in
Security"[2].

II. RELATED WORK

A. AES Algorithm
Rijndael is a fast algorithm that can be implemented

easily on simple processors [3]. It primarily consists of the
cryptographic processes like substitution and transposition,
shift operation, exclusive OR, and addition operations. AES
uses repeat cycles. There are 9 (128 bits), 11 (192 bits), or
13(256 bits) cycles.

B. DES Algorithm
DES is a block cipher, with a 64-bit block size and a 56-

bit key [3]. DES consists of a 16-round series of substitution
and permutation. In each round, data and key bits are shifted,
permutated, X-ORed, and sent through, 8 s-boxes, a set of
lookup tables that are essential to the DES algorithm.

978-1-4673-7670-9/15/$31.00 ©2015 IEEE

236
Authorized licensed use limited to: Somaiya University. Downloaded on October 16,2024 at 09:52:16 UTC from IEEE Xplore. Restrictions apply.

Decryption in AES as well as DES is essentially the same
process, performed in reverse.

III. IMPLEMENTATION

A. System Block Diagram
1. Jumbling block:

Jumbling process includes three sub- processes viz.
addition, selection, and reverse process. Process array is
given to Jumbling block [2]. Jumbling block prepends some
characters from character set and jumbling them with the
help modulus function .modulus function is a mathematical
function which returns remainder of the division process.

 Addition sub-block:
This block generates principle random value “l” and

updating the size of a Process array [4]. The original size of
process array P [] is ‘x’ which is now updated to (x + l).

The figure 1 illustrates the position of Process array P[].

 Process Array [x + l]

Figure 1. Process Array of JS algorithm

 Selection sub-block:
This block selects random characters from predefined

character set say, A. The size of character array is large
enough and the character set for a particular password is
different. The character set of general Process array is shown
in fig. 2 below:

Figure 2. Character Set of JS algorithm

 Reverse sub-block:
 This block reverses the entire process array based on
some predefined mathematical condition. The predefined
condition is to check the value of “l” is even or odd. Reverse
condition of JS algorithm is to create more confusion in
terms of recognizing the actual password. The condition for
reverse can be changed which depends upon the application
programmer who is developing JS algorithm. for example
we can even reverse entire process array if “l” is prime
number. The future scope of reversing process array can be
done by developing more complex mathematical functions.

 2. Salting block
The objective of salting block is to add random

string along with jumbled version of password. The criteria
of selection of salt is user’s sign-up timestamp value. The
salt is added in order to make the password more

complicated thereby making it difficult for the attacker to
crack it.The general form of salt array is shown in fig. 3
below:

Y Y Y Y M M D D H H m m s s
Where :
Y = Year , M= Month D = date h = Hours in 24 hours
format m = minutes s= seconds

Figure 3. Salt Array of JS algorithm

3. AES block:
In this block, we use predefined encryption algorithm

AES .AES block is having two sub routines namely, AES
encryption an AES decryption.

The block diagram of JS algorithm is shown in fig. 4
below.

Figure 4. Block diagram of JS algorithm

AES Block

Using Predefined AES
algorithm.

Salting Block

Creating and adding random
salt value

Reverse Sub-block

Reverse process
array if l is even

Selection sub-
block

Selects character
from set

Addition sub-block
Generating random

value, update P.

237
Authorized licensed use limited to: Somaiya University. Downloaded on October 16,2024 at 09:52:16 UTC from IEEE Xplore. Restrictions apply.

B. Proposed Algorithm
The pseudo code implementation of JS is given below:
Random (): It is a predefined method in most of the

programming languages which generates random value from
predefined set of values with the valid range.

Process array P []: This array stores the plain-text
password with randomly generated characters. We are using
this array for encryption as well as decryption process.

Salt array S []: This is use for storing timestamp value
from user. In this case, we use user’s sign-up time value as
timestamp value.

Input: password in plain-text form.
Output: password in Jumbled- salted form.
STEP 1:
INITIALIZE 'x' to 0;
STEP 2:
STORE the length of plain text input password in

variable “x”;
STEP 3:
CREATE an Process array P [] such that P [length =x];
STEP 4:
STORE each character in an array block;
// P {0, 1, 2... x-1) = {characters in process array with

index }
/* implementation of Jumbling Process */
Function jumbling (P [])
{
// implementation of jumbling technique: Addition

Process
STEP 5:
Label 1: CALL Random () function;
// Random function returns any random value from

predefined set of integers within the limit provided by
programmer.

SET ‘l’ as principle random value;
If (l >= x)
STORE random number value in ‘l’ generated from

random () function;
Else
Goto Label 1;
Break;
End If
STEP 6:
UPDATE an array P [] of size (x + l)
STEP 7:
DEFINE the set of characters A.
//Size (A) = M;
// M = any large value;
//implementation of jumbling technique: Selection

Process
/* this process selects characters from given character set.

All these symbols are added with plain-text password. These
process is also made randomized */

STEP 8:
CALL random () function 'l' times;
// At each iteration, random value is generated by random

function which acts as an index of the character in character
set.

STEP 9:
FILL the process array with characters
 STEP 10:
STORE the original length of an array in variable say

“FIX”
For i= 0 to (x+l-1)
While (l! =0)
SET j to 0;
 j= (FIX modulus l);
Create 'temp' variable;
Swap (P[i], P[j]);
//output of above modulus function is an index integer

within the range 0 to (x + l - 1), Hence we must swap output
value with the same index integer with index 0th position
value.

l= l-1; // decrement l
End While
End For
// implementation of jumbling technique: Reverse

process
STEP 11:
If (l modulus 2 == 0)
REVERSE the entire process array P; // l is EVEN

number
Else
Do not REVERSE the process array P; // l is ODD

number
End If
Return (P); // pass the jumbled process array to salting

function
} // end of jumbling function
/* implementation of Salting Technique */
Function salting(P[])
{
STEP 12:
STORE Timestamp value of Sign-up process for each

user;
STEP 13:
OBTAIN the length of timestamp say ‘t’.
STEP 14:
CREATE Salt [size=t] array which stores random salt

characters;
Salt [] = {characters obtained from Timestamp value};
STEP 15:
UPDATE an array P of size (x +l + t)
FILL the process array with Jumbled password of size

(x + l) and salt characters of size t
Return (P);
// pass the process array to AES function
}
// end of salting function
/* implementation of AES Technique */
Function AES(P [])
{
STEP 16:
Use of predefined AES algorithm can be implemented in

AES inbuilt function of any programming language;
}// end of AES function

238
Authorized licensed use limited to: Somaiya University. Downloaded on October 16,2024 at 09:52:16 UTC from IEEE Xplore. Restrictions apply.

IV. ANALYSIS PARAMETERS

A. Plain text size vs. Cipher text size
In any cryptographic algorithm, it is important to

understand the size of the input and the size of output as this
is one of the important property of an avalanche effect [5].
Larger the size of the Cipher-text compared with the
Plaintext, more secure is the Cipher-text against any brute-
force attack. JS, AES and DES cryptosystems uphold this
effect and there is no direct relationships between symbols in
the Cipher-text to the symbols in the Plaintext.

 The table I illustrated below gives the statistical analysis
of different set of passwords. For each passwords, the size of
cipher text and plain text is calculated.

TABLE I. COMPARISON OF PLAIN TEXT VS. CIPHER TEXT OF JS,
AES, DES ALGORITHMS.

Figure 5. Comparison of plain text Vs. cipher text of JS , AES ,DES

algorithms

Fig 5 shows the statistical analysis of Plain text size vs.
Cipher text size of JS, AES, and DES algorithm.

Following conclusions can be made for the parameter
Plain text size vs. Cipher text size:

 In JS algorithm, the size of cipher text as compared
to AES and DES algorithms is higher.

 For the larger password string, the cipher text size is
drastically increased. The reason behind increasing
the size of cipher text of JS algorithm is the number

of random characters added in the jumbling block
of JS algorithm.

 The range of characters that has been added in the
jumbling block has a range from ‘x’ to ‘5x’ (‘x’ is
the original length of password.). For example,
suppose we have the size of plain text password as
8 then the number of characters that has been added
in the jumbling block are having range from 8 to 40,
which increases the size of cipher text.

 Additionally, the salt (User’s sign up timestamp
value) has been added in the salting process which
increases the size cipher text.

B. Encryption Time
The encryption time is the time that an encryption

algorithm takes to produce a cipher-text from a plain-text of
password [5]. The encryption time has its paramount
importance for varied plaintext sizes as this determines the
time involved in converting plaintext into cipher-text [5].

JS algorithm has varying encryption time for different set
of passwords. As the Jumbling process is randomized, the
characters which are to be added in the process array P []
has varying length. For example if original password has
length 8 character length , then random characters which are
to be added might have length 8, 16, 22 etc. depending upon
the random number generated during execution .

The password string is taken according to the different
set of passwords. [6] It is observed that, the encryption time
of different set of passwords is almost same irrespective of
the characters present in the password string.

Total Time required for Encryption = Jt + St + AESt
Where,
Jt = Encryption Time for Jumbling process
St = Encryption Time require for Salting process
AESt = Encryption Time require for AES algorithm process

When we compare the encryption time of AES and DES

algorithm, the Encryption time is quite less, than JS
algorithm. Following table (table II) illustrates the
Encryption time of JS, AES and DES algorithm.

TABLE II. ENCRYPTION TIME OF JS, AES, DES ALGORITHMS

Password String JS AES DES

 Encryption Time (in Milliseconds)

prathamesh 114 81 34
c00lguy123 104 81 40
09o2862o349 119 77 45
PraThamEsH1991 125 80 55
FSt/5ghP*T 115 87 45

The bar chart (fig 6) shows the different encryption times

of AES, DES, and JS algorithm.

TEXT Plain text
size(in
bytes)

 JS
algorithm

AES
algorithm

DES
algorithm

Decryption text size (in bytes)

1 20 128 48 48
2 22 128 48 48
3 28 206 48 192
4 138 400 214 310
5 570 1360 836 1066

239
Authorized licensed use limited to: Somaiya University. Downloaded on October 16,2024 at 09:52:16 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Encryption time of JS , AES , DES algorithms

C. Decryption Time
The decryption time is the time that a decryption

algorithm takes to reconstruct a plaintext from a cipher-text
[5]. The decryption time has its paramount importance for
varied cipher-text sizes as this determines the time involved
in converting cipher-text back to plaintext [7].

 The table III illustrated below has three columns
mainly decryption time of JS, AES, DES algorithms.

TABLE III. DECRYPTION TIME OF JS, AES , DES ALGORITHMS

Password String JS algorithm AES DES

 Decryption Time (in Milliseconds)

prathamesh 70 64 26
c00lguy123 69 60 30
09o2862o349 94 64 30
PraThamEsH1991 95 65 38
FSt/5ghP*T 69 72 26

Figure 7. Decryption time of JS , AES , DES algorithms

From, the experimental analysis it is observed that,
Encryption as well as decryption time of JS algorithm is
quite larger than AES and DES algorithm. There are
following reasons which justifies the same:

 The plain text password undergoes jumbling block,
where extra characters are added. The total number
of characters to be added, will be decided by the
random number. For example, if we have plain text
password length as 8 (denote as x in the algorithm)
then the range of random number generated will be
starting from 8 an ending up to 40 (x to 5x).

 In the jumbling process the character will undergo,
the addition and selection process where added
characters are jumbled with original password string.
This process takes (x + l – 1) iterations.

 After jumbling block, algorithm undergoes the
process of salting. Where predefined salt is added to
the jumbled string of passwords.

 Finally, jumbled and salted version of password
undergoes, AES block where the encryption time of
AES algorithm is added.

 Similarly we can comment the following justification for
decryption process as well.

D. Throughuput

The encryption time can be used to calculate the
Encryption Throughput of the algorithms. The decryption
time can be used to calculate the Decryption Throughput of
the algorithms [5]. Different packet sizes are used in this
experiment for JS, AES and DES algorithms.

We have taken the varying text size length in order to
calculate throughput in encryption as well as decryption.

TABLE IV. ENCRYPTION TIME OF JS, AES , DES ALGORITHMS FOR
THROUGHPUT CALCULATION

Text Size
for

Encryption
(In bytes)

(

Text Size
for

Decryption
(In bytes)

(

Encryption Time
JS

(

AES

(

DES

(

10 (A1) 176 112 99 71
26 (A2) 222 145 128 111
46 (A3) 392 185 163 129
570 (A4) 1378 240 203 167
6808 (A5) 18568 375 311 269

7460

20,610

1077

904

747

240
Authorized licensed use limited to: Somaiya University. Downloaded on October 16,2024 at 09:52:16 UTC from IEEE Xplore. Restrictions apply.

TABLE V. DECRYPTION TIME OF JS, AES , DES ALGORITHMS FOR
THROUGHPUT CALCULATION

The Encryption Throughput and decryption throughput

of all three algorithms are tabulated below:

TABLE VI. ENCRYPTION THROUGHPUT OF JS, AES , DES
ALGORITHMS

Text Encryption
Throughput of
JS algorithm

Encryption
Throughput of
AES algorithm

Encryption
Throughput of
DES algorithm

A1 0.0892 Kb / s 0.1010 Kb / s 0.1408 Kb / s
A2 0.1793 Kb / s 0.2031 Kb / s 0.2342 Kb / s
A3 0.2486 Kb / s 0.2822 Kb / s 0.3565 Kb / s
A4 2.3750 Kb / s 2.8078 Kb / s 3.4131 Kb / s
A5 18.1546 Kb / s 21.8900 Kb / s 25.3085 Kb / s

TABLE VII. DECRYPTION THROUGHPUT OF JS, AES , DES
ALGORITHMS

Text Decryption
Throughput of
JS algorithm

Decryption
Throughput of
AES algorithm

Decryption
Throughput of
DES algorithm

A1 2.3157 Kb / s 2.5142 Kb / s 3.0567 Kb / s
A2 2.4667 Kb / s 3.0410 Kb / s 3.9642 Kb / s
A3 3.3793 Kb / s 3.8811 Kb / s 4.3280 Kb / s
A4 11.6779 Kb / s 12.7590 Kb / s 16.0235 Kb / s
A5 110.5230Kb / s 162.8771Kb/ s 180.271 Kb / s

Figure 8. Encryption throughput of JS , AES , DES algorithms

Figure 9. Decryption throughput of JS , AES , DES algorithms

Following conclusions can be made from varying text size
cases of JS, AES and DES Algorithms.

 The Encryption and decryption throughput response
of JS algorithm is linear.When the size of texts
increases the throughput is increases.

 As compared to AES and DES Algorithms, the
throughput of JS algorithm is lower as the overhead
of Jumbling process increases the Encryption and
decryption time of JS algorithm.

 As far as Password of a particular string is
concerned, there is no drastic change in the
throughputs of JS, AES and DES Algorithms. Hence
JS algorithm is prove to be efficient algorithm.

V. CONCLUSION
JS algorithm builds an encrypted version of password

which is almost difficult to crack, due to involvement of
different randomization processes.

The size of cipher text created in JS algorithm is larger
than AES and DES Algorithms. For example, the plain text
having length 28 bytes can generate 206 bytes of cipher text
length in JS algorithm. With the same size of plain text, AES
produces 48 bytes and DES algorithm produces 192 bytes of
cipher text .The reason for increasing the larger text size is
the extra overhead of the characters which helps in making
password difficult to crack.

The encryption time and decryption time of JS algorithm
is quite larger than AES and DES algorithms. The reason
behind increasing the value of processing time is additional
overhead of jumbling and salting process. The jumbling and
salting process exhibit the feature of randomization. The
average difference between the encryption time of JS
algorithm with respect to AES and DES algorithm is 40 and
60 milliseconds respectively. Similarly the average
difference between decryption times of JS algorithm with
respect to AES and DES algorithm is 10 and 60 milliseconds
respectively.

Text Size
for

Encryption
(In bytes)

(

Text Size
for

Decryption
(In bytes)

(

Decryption Time
JS

(

AES

(

DES

(

10 (A1) 176 76 70 48
26 (A2) 222 90 73 56
46 (A3) 392 116 101 79
570 (A4) 1378 118 108 86
6808 (A5) 18568 168 114 103

7460

20,610

589

402

326

241
Authorized licensed use limited to: Somaiya University. Downloaded on October 16,2024 at 09:52:16 UTC from IEEE Xplore. Restrictions apply.

The average encryption throughput of JS algorithm for
TEXT SET A (A 1 to A 5) is 4.20884 Kb / s whereas in AES
algorithm – it is 5.05682 Kb / s. whereas in DES algorithm it
is -5.88924 Kb / s. Similarly the average decryption
throughput for TEXT SET A is 26.06916 Kb / s whereas in
AES algorithm – it is 37.0012 Kb / s. whereas in DES
algorithm it is - 42.4712 Kb / s. the reason behind
increasing encryption and decryption throughput is increase
in encryption and decryption time of JS algorithm.

The algorithm can be enhanced by securing the principle
random number on server side. We can also modify the
processes involved in predefined AES algorithm so that
complexity of encryption will be increased. Reduction in
encryption and decryption time of the algorithm, will further
improve the throughput of the algorithm.

ACKNOWLEDGMENT
I am using this opportunity to express my gratitude

to everyone who supported me throughout this research. I am
thankful for their aspiring guidance, invaluably constructive
criticism and friendly advice during the research work. I am
sincerely grateful to them for sharing their truthful and
illuminating views on a number of issues related to the
project. I am also thankful to Principal Mr. V. C. Kotak and
management of my institute for their support and
encouragement. I am highly indebted to my Head of
Department Ms. Swati Deshpande and guide Ms. Vaishali
Ghate and co-guide Ms. Kranti Ghag for their guidance and
constant supervision as well as for providing necessary
information regarding the research & also for their support in
completing the project on research.

I am also thankful to the pioneers of this algorithm Mr.
Bhavin save and Ms. Medha Kalelkar for their support. I
want to dedicate this work to my brother Mr. Rohan
chaudhari for consistently encouraging me throughout this
project. Without him my research would have never been
published in international level. Last but not least, I want to
thank all my Vidyavardhini’s College of Engineering and
Technology- Information Technology department (where I
am currently working as a lecturer) for providing me
valuable advice at a very right time of my research.

ABOUT AUTHORS
Prathamesh P Churi is currently pursuing his Master’s

degree in Information Technology from Shah and anchor
kutchhi engineering college, University of Mumbai. He has
completed his bachelor’s degree in Computer Science from
Vidyalankar Institute of Technology, University of Mumbai.
He is currently working as a lecturer in Vidyavardhini’s
college of engineering and technology, University of
Mumbai.

Vaishali Ghate is currently working as Assistant
professor in Shah and anchor kutchhi engineering college,
University of Mumbai. She has 15 years of Experience in
teaching. Her area of interests are Wireless Technology and
Information Security.

Kranti Ghag is currently working as Assistant professor
in Shah and anchor kutchhi engineering college, University
of Mumbai. She has 10 years of Experience in teaching. She
is pursuing PhD in Computer Science from NMIMS
MPSTME, Mumbai, India. Her area of interest are
sentimental analysis and data mining.

REFERENCES
[1] Applied Cryptography-Protocols, Algorithms and Source Code in C ,

John Wiley Publications, ISBN 978-04711-17094)
[2] Prathamesh Churi, Medha Kalelkar, and Bhavin Save, “JSH

Algorithm: A Password Encryption Technique using Jumbling-
Salting-Hashing”, International Journal of Computer Applications
(0975-8887), Vol. 92-No.02, April 2014.

[3] William Stallings. Cryptography and Network Security: Principles
and Practices, Fourth Edition. Beijing: Electronic Industry Press.
2007: 229~250.

[4] O. Goldreich, S. Goldwasser, and S. Micali, “How to Construct
Random Functions”, J. ACM, Vol. 33, No. 4, 1986, pp 210-217.

[5] "A Performance Comparison of Data Encryption Algorithms," IEEE
Information and Communication Technologies, 2005. ICICT 2005.
First International Conference, 2006-02-27, PP. 84- 89.

[6] M. Stamp. Information Security : Principles an practice, Wiley
publications , ISBN-13 978-0-471-73848-0

[7] Tingyuan Nie, Chuanwang Songa, Xulong Zhi (2010), “Performance
Evaluation of DES and Blowfish Algorithms”, Proceedings of 2010
IEEE.

242
Authorized licensed use limited to: Somaiya University. Downloaded on October 16,2024 at 09:52:16 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

