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Abstract—Metal oxide semiconductors proved their usabil-
ity in environmental monitoring applications and are consid-
ered successful in detecting ionizing radiation. This work
reports the feasibility of solution-processed metal oxide
semiconductor thin-film transistors for radiation sensing for
the first time. In particular, the effects of a wide range of
gamma radiation (100Gy to 10kGy) on the performance of
solution-processed amorphous Indium-Gallium-Zinc-Oxide
(a-IGZO) transistors are investigated. The current-voltage (IV)
characterization (both output and transfer characteristics) of
IGZO-TFTs before and after irradiation are obtained to study
different parameters. The radiation-induced changes in TFT
are mainly observed in the threshold voltage shift (� Vth) and
the increase of subthreshold swing. It is observed that up to
a total dose of 1kGy, threshold voltage increases negatively
(� Vth = −1.8V at 1 kGy), and beyond 1 kGy, threshold
voltage increases positively (� Vth = 0.8V at 10 kGy). The
XRD and AFM data of IGZO thin-film suggests minor structural
and morphological changes after exposure to gamma irradiation. The corresponding sensitivity obtained with gamma
irradiation is 27.78 mV/Gy (100Gy-1kGy),expressed in the thresholdvoltage shift. The effects of radiation-inducedchanges
in TFTs are completely removed after storing irradiated TFTs in the vacuum at room temperature for 6 months.

Index Terms— Thin-film, Gamma radiation, solution-process, sensor, transistor.

I. INTRODUCTION

THE recent years have seen significant research on
electronically functional materials that can be processed

on large areas of the flexible and low-cost substrates.
The materials, such as organic polymers, nanostructured
materials, and amorphous oxides (AOs) have been explored to
develop a range of novel applications such as light-emitting
diodes, thin-film transistors, and sensors onto large-area
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surfaces [1]–[3]. Such devices’ exposure to mechanical,
photonic, or chemical stress must not disturb their electronic
performance. Hence, the encapsulating materials are
introduced in the device architecture to minimize the sensitive
active layer’s exposure to external chemicals or light and
reduce mechanical stress [4]. However, the encapsulation strat-
egy does not apply to protect the devices and their electronic
performance in the harsh radiation environment as encountered
in space, nuclear power plants, or medical diagnostics [5], [6].
To realize low-cost detectors or sensors without heavy metallic
shielding, electronic materials can be processed at low cost and
withstand the continuous exposure to high energy particles (α,
protons, electrons) must be explored. The radiation hardness
of traditional materials and devices related to complementary
metal-oxide Semiconductors (CMOS) based electronics have
been reported [5]. The amount of trapped charge in the
dielectric tends to increase with the total ionizing dose. The
trapped charge leads to space charge fields, causing threshold
voltage shift and excessive leakage in CMOS structures. Also,
the interfacial trap states created as a function of radiation
dose at the SiO2/ Si interface, act as scattering centers to the
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nearby accumulation layer and deteriorate subthreshold slope
and mobility [7]–[9]. Meanwhile, a CMOS compatible organic
transistor was built and used in gamma radiation sensing,
where authors reported reduced mobility and enhanced
subthreshold swings upon increasing the dose (0 Gy to 3 Gy)
[10]. However, the drawback of the sensor is its organic
channel layer that deteriorates over time. Hence, the standard
CMOS integrated circuit components show failure at a total
dose less than 100 Gy. Previously, dedicated processing
technology has been reported [11] that uses the reduced
thickness of oxide dielectrics for preparing radiation-hard
CMOS components. They withstand a dose level of 1
kGy (Si), as necessary for space applications [11], [12].
Polycrystalline silicon thin-film transistors (TFTs) fabricated
using low-pressure chemical vapor deposition (LPCVD)
exposed to γ -irradiation up to 10 kGy was found to be
more susceptible to leakage current degradation leading to
permanent failure of the devices [13]. The amorphous silicon
TFTs fabricated on a flexible substrate show an increased
subthreshold swing of 2V/decade and threshold voltage shifts
of −2.1 V after an irradiation dose of 6.6 kGy [14].

Alternative material platforms for large-area electronic
devices are transparent conducting oxides (TCO). The TCOs
already find commercial applications in flat-panel displays,
light-emitting diodes, solar cells and optoelectronic devices
because of their outstanding electronic transport properties,
optical transparency and easy and cheap processing. The
possibility modifying physical properties by controlling sto-
ichiometry of TCOs makes them suitable in the develop-
ment of piezo-MEMS technology and ferromagnetic tunnel
junctions [15].The TCOs are considered intrinsically stable
semiconducting materials due to the high formation energy
of the oxide-based ionic lattice and their amorphous structure.
The amorphous-Indium Gallium Zinc Oxide (a-IGZO), which
is also TCOs, has been used extensively as a channel material
of TFTs in the last decade. The a-IGZO-TFT is a potential
candidate to replace organic and amorphous silicon TFTs
for driving active-matrix liquid crystal displays (AMLCDs)
and active-matrix organic light-emitting diodes (AMOLEDs)
because of their high field-effect mobility (∼10 cm2.V−1.s−1),
good uniformity, and simple processing methods [16], [17].
The proper selection of concentration of Indium, Gallium
and Zinc in the IGZO films ensures the TFTs with excellent
electrical properties and stability [18]. The electrical conduc-
tivity in zinc oxide is controlled by zinc interstitials and/or
oxygen vacancies so the optimization of zinc concentration
is important. The high-k gate dielectric such as aluminium
titanium oxide is reported to be better that ensure a pure amor-
phous film as compared to SiO2 and SiNx dielectrics [19].
Furthermore, solution-based processes of a-IGZO, such as
spin-coating and inkjet printing, enable low cost, low temper-
ature (< 350◦C), and high throughput fabrication possibility
on low-cost, flexible substrates without a need for vacuum
facilities [20], [21].

The γ -irradiation effects on amorphous and polycrystalline
TFTs fabricated using HMSOs such as polycrystalline-ZnO
(poly-ZnO), amorphous-IZO (a-IZO), and crystalline-IGZO

(C-IGZO) are investigated. The poly-ZnO TFTs fabricated
using vacuum processing and with Al2O3 dielectric exhibited
good stability toward γ -irradiation dose of 1MGy with a
threshold voltage (�Vth) shift of −1.8 V and nearly con-
stant field-effect mobility [22]. Amorphous IZO-TFTs with
SiO2 gate dielectric exposed to the γ -irradiation dose of 3
kGy had performance degradations, including a sub-threshold
swing rise of 250mV/decade and Vth shifts of around
−10V [23]. Another study on a-IZO–TFTs exposed to irra-
diation of 15 kGy reported Vth shifts of around −15V and
severe device degradations [24]. The crystalline IGZO-TFTs
exposed to 12C6+ beam heavy ion irradiation exhibited good
stability with Vth shifts of 1V and subthreshold swing of
250mV/decade after 1.3 kGy exposure [25]. As reported,
Gallium creates a stronger bond with oxygen than Indium or
Zinc that ensures better stability in amorphous a-IGZO-TFTs
than in a-IZO-TFTs. The merits, such as strong ionic bonding
of the metal oxide-based semiconductor channel, fabrication
on the low cost flexible substrates without the need of vac-
uum processes, and the low power consumption due to the
controlled off-state leakage current can make a-IGZO-TFTs
suitable for applications in harsh radiation environments such
as spacecraft, nuclear reactors, medical radiation detectors, and
high-energy particle accelerators [26], [27].

To the best of our knowledge, no work has been reported
on the effects of γ -irradiation on n-channel enhancement-
mode solution-processed a-IGZO TFT. In this work, the elec-
trical characteristics of solution-processed a-IGZO TFTs are
presented before and after gamma irradiation to high-total-
dose levels. The corresponding device parameters have been
segregated into two exposure regimes, to signify the effects of
irradiation and to diversify applications. The effects of ionizing
radiations on the effective channel mobility, radiation-induced
traps, threshold voltage shift, and response to room tempera-
ture annealing are investigated.

The sensitivities extracted are of 0.13 × 10−3

cm2.V−1.s−1/Gy and 27.78 mV/Gy for mobility and threshold
voltage, respectively. Further, the proposed γ -radiation sensor
stored in a vacuum ambiance showed complete recovery,
ensuring its reusability.

II. SYNTHESIS, FABRICATION & CHARACTERIZATION

A. Synthesis of IGZO Solution
The sol-gel method was used to synthesize 0.1M

IGZO (mole ratio 9:1:2 of Indium, Gallium, and Zinc)
solution [28]. The stock solution was prepared by
dissolving 5N purity metal precursors (225.5 mg of
indium nitrate hydrate (In(NO3. ×H2O)), 21.4 mg of
gallium nitrate hydrate (Ga(NO3. ×H2O)) and 31.4 mg zinc
nitrate hydrate (Zn(NO3. × H2O))) from Sigma Aldrich in 10
mL of 2-methoxyethanol (99% Sigma Aldrich). The Additives,
namely 100μL of acetylacetone (aq) (Sigma Aldrich, 99%)
and 40μL of ammonium hydroxide (aq) (28.0% NH3 in water,
Aldrich, 99.99%) were added in IGZO solutions. After stirring
above mixture at 800 rpm for 24 hours at room temperature,
the final solution was filtered 0.22 μm PTFE syringe filter.
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Fig. 1. (a) Schematic of the a-IGZO-TFT structure realized after fabrication in the cleanroom. The Width/length ratio of the a-IGZO-TFTs (W/L =
10000 μm / 20 μm). The gate oxide (SiO2) thickness is 100 nm. The spin-coated channel (IGZO) thickness is ∼10nm. (b) IGZO Surface FESEM
Image (c) FESEM Cross-sectional image of IGZO-TFT.

B. Fabrication of IGZO-TFTs
The bottom gate-bottom contact IGZO-TFTs were

fabricated on highly doped silicon substrates (n++) from
Fraunhofer IMPS. The substrate consisted an n-doped (doping:
n ≈ 3 × 1017 cm−3) silicon < 100 > wafer which acts as
a gate, the thermally grown SiO2 as the gate dielectric, and
the interdigitated source/drain terminals ITO-gold patterned
on SiO2 (thickness = 100nm) to ensure large width to
length (W/L = 10000μm/20μm) ratio. These substrates were
ultrasonically cleaned in acetone and isopropyl alcohol (IPA)
for 10 minutes each and dehydrated at 120 ◦C for 5 min to
remove water traces. Further, UV ozone cleaning was done
for 10 min to remove organic contaminants and improve the
surface’s wetting. Then, immediately the synthesized IGZO
solution was spin-coated on the substrate at 3000 rpm for
30 Seconds under fume hood. The resulting thin layer of
IGZO was annealed at 300 ◦C for 3 hours in the ambient air.
A schematic illustration of the IGZO-TFT structure is shown
in Fig. 1(a).The spin-coated a-IGZO thin-film was smooth
surface (Fig. 1(b)) with thickness was around 8-10nm that
was measured using a cross-sectional image (Fig. 1(c)) using
Field Emission Scanning Electron Microscope (FESEM).

C. Gamma Irradiation
60Co-Gamma-ray irradiation of a-IGZO-TFT was per-

formed at room temperature using a Cobalt-60 γ -radiation
source (Gamma Chamber (GC 5000), BRIT, India) at a dose
rate of 16 Gy/min and dose range from 100 Gy to 10 kGy.
During irradiation, no electrical bias was applied to the gate,
drain and source terminals of the a-IGZO-TFT.

D. Microscopic and Electrical Characterization
The effects of γ -irradiation on different characteristics

of the IGZO films and TFTs were investigated. X-Ray
Diffraction (XRD) patterns of the pre and post γ -irradiated
IGZO thin films were recorded using the Rigaku High-
Resolution X-ray diffractometer with CuKα radiation (λ =
1.5418 A◦ and rated at 9 kW). Atomic force microscopy

Fig. 2. XRD patterns of a-IGZO thin-film exposed to different doses of
gamma radiation indicating the changes in (009) phase.

(AFM) imaging of the pre and post γ -irradiated IGZO
surface was carried out with a 1μm2 scan area using Asylum,
MFP-3D conductive AFM system. The current-voltage
(IV) characterization of the a-IGZO-TFT before and after
irradiation was performed using Keithley 4200 Source-
Measure Unit (SMU) under a dark inert atmosphere.

III. RESULTS AND DISCUSSION

A. XRD of a-IGZO Thin-Film
The XRD patterns of the a-IGZO film before and after

exposure to γ -radiation are shown in Fig. 2.
As can be seen a low intensity but a clear peak (009) of

IGZO around 32◦ angle was observed in irradiated samples.
The intensity of XRD peaks increased for lower radiation dose
up to 1 kGy and later decreased with increasing radiation
dose. Therefore, minor phase changes from amorphous
to Nano-crystalline of the irradiated film were observed,
which can be attributed to ionization of a-IGZO film by
γ -irradiation [29]–[30].
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Fig. 3. AFM images of IGZO thin films of different γ-radiation doses
(0 Gy, 500 Gy and 10 kGy). Image Scan Size is (1μm X 1μm) with
corresponding roughness variation measurements.

B. Morphology Study of a-IGZO Thin-Film
The morphological variations and surface roughness of

IGZO films exposed to γ -radiation were determined using
an Atomic Force Microscopy (AFM). The RMS roughness
was calculated using AFM software Gwyddion and presented
for samples irradiated to different doses in Fig. 3. The RMS
roughness value increases with increase in radiation dose. The
RMS roughness observed was 0.2 nm, ∼0.5 nm and ∼1.5 nm
for unirradiated, 500 Gy irradiated and 10 kGy irradiated
samples, respectively. The increase of RMS roughness can
be attributed to the radiation-induced surface reorganization.
As clearly observed from AFM 3D images that large clusters
were formed, this can be attributed to crystallites’ agglomer-
ation. In the oxide semiconductors, it is quite common that
the grain size increases, and eventually, they agglomerate
after gamma radiation. The AFM results are consistent with
the findings of other researchers for the metal oxide thin-
films [31]–[32].

C. Electrical Characterization Before Irradiation
The output and transfer characteristics of IGZO-TFTs

before irradiation were measured at room temperature.
Fig. 4(a) shows the corresponding output (Ids−Vds) character-
istics for various gate bias steps. The lack of current crowding
at low Vds bias indicates good ohmic contact [33] and also,
the device exhibits excellent gate control of the linear and sat-
uration operation regimes of TFT. Fig. 4(b) shows the transfer
characteristic (Ids − Vgs) in semi-logarithmic and square root
scales. The threshold voltage (Vth) was determined from a
linear regression fit to the transfer characteristic

√
Ids − Vgs

in the saturation region. The TFTs linear mode mobility (μ)
was determined from (1) [24], [34].

μ = ∂ Ids

∂V gs
· L

W · Cox · V ds
(1)

Fig. 4. (a) Output characteristics (Ids versus Vds) (b) Transfer Char-
acteristics (log (Ids) and

√
Ids versus Vgs) for IGZO-TFT before gamma

irradiation. The Width/length ratio of TFTs (W/L = 10000 μm /20 μm).
The gate oxide (SiO2) thickness is 100 nm.

where Cox is oxide capacitance, the mobility was determined
using transfer characteristics for Vds = 9V and Vgs =10V).
The subthreshold swing (SS) is obtained from the slope of
log (Ids) versus Vgs that is (left curve in Fig. 4(b)). The
solution-processed a-IGZO-TFTs exhibit excellent electrical
characteristics.Total 40 TFTs were used in this study. The
extracted parameters for the TFTs were in the range Vth=
(0.5±0.3) V, μ = (0.85±0.25) cm2. V-1.s-1 and SS = (0.5 ±
0.3) V/decade. The TFTs showed minor hysteresis (0.3 ±
0.1) V in the transfer characteristics. The positive (+ 20V)
and negative (-20 V) bias stress with source/drain terminals
grounded was performed on TFTs. The positive shift of (0.3 ±
0.1 V) for positive bias stress and (0.2 ± 0.1 V) for negative
bias stress was observed for bias stress for 1000 seconds.
The interface trap density (Nit) at semiconductor/gate oxide
interface is estimated from SS as in the equation in (2) [34],

Nit = Cox

q
(
q.SS.log (e)

kT
− 1) (2)

where q, k and T are the carrier charge, Boltzmann constant
and working temperature, respectively. The maximum Nit
is ≈ 1.1×1012 cm−2. eV−1 for the devices before irradiation.
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Fig. 5. (a) Output characteristics (Ids versus Vds) (b) Transfer Char-
acteristics (log (Ids) and

√
Ids versus Vgs) for IGZO-TFT with 10 kGy

γ-radiation dose. The Width/length ratio of TFTs (W/L = 10000 μm
/20 μm). The gate oxide (SiO2) thickness is 100 nm.

D. Radiation-Induced Effects in a-IGZO-TFTs
After completion of γ -irradiation, the electrical charac-

teristics of TFTs were measured at room temperature. The
performance parameters of the TFTs were extracted using
similar procedure as described for TFTs before irradiation.
The I-V characteristics were measured for a series of doses
(100 Gy, 200 Gy, 500 Gy, 1 kGy, 2 kGy, 3 kGy, 5 kGy,
and 10 kGy) and extracted TFT parameters. The output and
transfer characteristics of a-IGZO-TFT with γ - radiation dose
of 10 kGy are shown in Fig. 5 (a) and (b). It can be seen in
Fig. 5(a), that there is a reduction in ON-current of TFTs.
The positive Vth shift can be observed in Fig. 5(b). The
threshold voltage shift (�Vth) is defined as the difference
between the Vth of irradiated TFT and its pre-irradiated value.
Fig. 6(a) shows � Vth as a function of the total dose that
exhibits two distinct regimes. There is a negative shift of Vth
with total radiation in the first regime (100 Gy to 1kGy).
In the second regime (1kGy to 10kGy), a positive shift in
Vth is observed. The two primary types of radiation-induced
charges are oxide-trapped charge and interface-trap charge.
In the TFTs with SiO2 as the gate dielectric, the threshold
voltage initially shifted negatively upon irradiation. Positive
oxide-trap charges are generated in a greater amount than

Fig. 6. (a) Threshold Voltage shift (b) Radiation-induced interface trap
density (ΔDit) and mobility change, as a function of the total dose. The
Width/length ratio of TFTs (W/L = 10000 μm/20 μm). The gate oxide
(SiO2) thickness is 100 nm.

the interface traps. The oxide-trap charges are acceptors for
the upper half of the semiconductor’s band-gap. With further
irradiation, the interface traps’ density begins to increase
substantially and eventually greater than the radiation-induced
oxide trap charges. As a result, the threshold voltage shifts
back towards positive values. Thus, the change in the threshold
voltage direction is apparently due to both radiation-induced
charges. Interface traps and positive oxide charges are both
generated and they compete with each other to influence the
electrical performance of the TFTs [5], [35].

A curve fitting to the data �Vth versus radiation dose within
the first regime (100 Gy to 1 kGy) and second regime (3 kGy
to 10 kGy) was performed with the expression as indicated
by (3). [36], [37].

�Vth = A.Dn (3)

where A is the radiation sensitivity of the device, n is the
degree of linearity and D is the absorbed total dose. The
fitting parameters obtained are A = 27.78mV±0.8mV/Gy,
n = 0.73±0.04 (for 100 Gy to 1 kGy) and A = 14.38mV±
0.1mV/Gy, n = 0.53±0.07 (for 3 kGy-10 kGy). Hence,
the a-IGZO-TFTs can be used as radiation dosimeters for
applications for radiation dose ranging from 100 Gy to 1 kGy.

The radiation-induced interface trap density (�Dit) can be
determined as per the (4) [34]

�Dit = (SSirradiated − SS0) (
q

kT . ln (10)
)Cox (4)
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TABLE I
COMPARISON OF A-IGZO WITH REPORTED GAMMA RADIATION SENSORS

Fig. 7. (a) Transfer Characteristics (log (Ids) and
√

Ids versus Vgs) of
IGZO-TFTs before radiation, immediately after (a) 500 Gy irradiation
(b) 10 kGy irradiation, and after room temperature annealing for three
months and six months. The Width/length ratio of TFTs (W/L = 10000
μm/20 μm). The gate oxide (SiO2) thickness is 100 nm.

where, SSirradiated is the subthreshold swing of a TFT after
the desired radiation dose and SS0 is the un-irradiated thresh-
old swing. As shown in Fig. 6(b), �Dit is increasing monoton-

ically. A plot of effective channel mobility (μ) normalized
with respect to the pre-irradiated value (μo) is indicated in
Fig. 6(b). The effective channel mobility is decreased slightly
with radiation dose, where a total reduction of 23% for max-
imum radiation dose of 10 kGy. Here, the recovery behavior
of Vth in conjunction with other parameters of the device
helps create unique signatures to detect dose- levels, unlike
other dosimeters [10], [36]. Further, a sensor array realized
using IGZO-TFT and other dosimeters can help mitigate false
positive alarms due to the generated unique signatures (feature
set). Table. I details the comparison of a-IGZO-TFTs as a
gamma radiation sensor with other reported sensors. Here,
the devices such as metal oxide semiconductor (MOS) capaci-
tors, MOS resistor, and TFTs with different channel/dielectric
materials are considered to analyze the parameter variation
with respect to radiation dose. The performance parameters
considered for comparison are minimum radiation dose that
can be detected (limit of detection) by a sensor, variation
of sensing parameter with radiation dose (sensitivity), and
range of radiation exposure. The a-IGZO-TFT sensor covers
a wide range of radiation dose (100 Gy-10 kGy) with a limit
of detection of 100 Gy. The sensitivity of the a-IGZO-TFT
sensor is defined in terms of two parameters: mobility change
(�μ/Gy) and threshold voltage shift (�Vth/Gy) with radiation
dose. The sensor exhibits sensitivity (�μ/Gy) of 13 × 10−3

cm2.V−1.s−1/Gy for a wide range of 100 Gy to 10 kGy
exposure. The sensor shows the highest sensitivity (�Vth/Gy)
of 27mV/Gy for a broader radiation dose of 100 Gy to 1 kGy.
The sensitivity is 14.38 mV/Gy for radiation dose ranging from
3 kGy to 10 kGy.

E. Effect of Room Temperature Annealing
The γ -irradiated TFTs after electrical characterization were

stored in vacuum at room temperature, defined here as room
temperature (RT) annealing. The I-V characteristics of TFTs
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TABLE II
SUMMARY OF TFT PARAMETERS AFTER RT ANNEALING

were measured at an interval of three months. Fig.7 (a) and (b)
indicate the transfer characteristics of the RT-annealed TFTs a

After Radiation b Room Temperature annealing (for 6 Month)
exposed to γ -irradiation of 500 Gy and 10 kGy. The recovery
of the TFT parameter after RT-annealing for 6 months is
summarized in Table II. A gradual recovery of all γ -irradiated
a-IGZO-TFT’s intrinsic characteristics post room temperature
storage in the vacuum for 6-months was observed.

IV. CONCLUSION

The gamma irradiation causes the threshold voltage to shift
negatively for radiation dose up to 1 kGy and positively for
radiation dose more than 1 kGy. The density of interface states
increases from 1.1 × 1012 cm−2.eV−1 for un-irradiated TFT
to 6.8 × 1012 cm−2.eV−1 for irradiated TFT with radiation
dose of 10 kGy. The field-effect mobility decreases by 23%
for a highest radiation dose of 10 kGy. The gamma irradiation
has insignificant or no effect on the structure and morphology
of a-IGZO film. The effect of gamma radiation on the TFTs’
electrical characteristics is mainly due to the combined effects
of the creation of interface states and gate oxide charges. The
room temperature storage for a brief period of 6 months in
vacuum showed gamma-irradiated TFTs’ recovery. A-IGZO-
TFT’s reliability is found to be better than a-Si and a-IZO-
TFTs in a harsh ionizing radiation environment. Moreover, this
sensor device, when employed in a sensor array with other
solution-processable materials, yield unique signatures. The
advantage of low-cost fabrication and better radiation relia-
bility of solution-processed a-IGZO-TFT makes it a potential
candidate for applications in harsh radiation environments such
as spacecraft, nuclear reactors, and medical radiation detectors.
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