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Abstract
The aim of this research is to combine Explainable AI (XAI) with advanced optimization techniques to provide a unique

framework for seizure detection. This proposed work investigates how to enhance patient-specific and patient-non-specific

seizure detection models by combining multiband feature extraction, SHAP-based feature selection, SMOTE, and a

metaheuristic algorithm for hyperparameter tuning.The discrete wavelet transform (DWT) is used to decompose EEG

signals to retrieve entropy-based and statistical information. Simulated Annealing (SA) is employed to optimize the

Random Forest (RF) classifier’s hyperparameters, and SHAP (SHapley Additive exPlanations) values are utilized for

feature selection. Furthermore, a novel technique SHAP-RELFR has been demonstrated to select patient-non-specific

features. Additionally, SMOTE is employed to handle imbalanced data. The proposed methodology is evaluated on the

CHB-MIT and Siena datasets using both patient-specific and patient-non-specific feature selection approaches. Experi-

mental findings demonstrate that the proposed methodology significantly improves the performance of seizure detection.

The average accuracy, precision, sensitivity, specificity, F1-score, and AUC obtained for a patient-non-specific case are

96.58%, 95.19%, 94.52%, 98.02%, 94.72%, and 0.9452, respectively, using the CHB-MIT dataset. For the Seina dataset,

the average accuracy, precision, sensitivity, specificity, F1-score, and AUC obtained for a patient-non-specific case are

94.81%, 94.51%, 94.04%, 96.87%, 94.28%, and 0.9400, respectively. Explainable AI combined with SMOTE and a

metaheuristic optimization algorithm facilitates an enhanced seizure detection. The novel SHAP-RELFR method provides

an effective patient-non-specific feature selection, enabling this approach to be applicable across diverse patients. This

proposed framework offers a step toward enhancing clinical decision-making by providing interpretable and versatile

seizure detection models.

Keywords Epilepsy � Multichannel EEG � Explainable artificial intelligence (XAI) � SHAP-RELFR � Simulated annealing �
Random forest

Introduction

Millions of people worldwide suffer from epilepsy, a

widespread neurological illness marked by repeated sei-

zures that significantly compromise everyday functioning

and pose health hazards (WHO 2022; Pais-Ribeiro and

Meneses 2011; Narin 2022; Polat and Nour 2020). To

reduce the hazards involved and improve the quality of life

for those who have epilepsy, early seizure identification

and treatment are essential (Amengual-Gual et al. 2019).

Innovative methods for seizure detection have been made

possible by advances in medical technology over time, with

machine learning emerging as a promising avenue

(Amengual-Gual et al. 2019). Electroencephalography
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(EEG) serves as a powerful non-invasive tool for diag-

nosing and analyzing various neurological (Siuly et al.

2016; Faust et al. 2008) and psychological conditions,

including schizophrenia (Gupta et al. 2023, 2024),

depressive disorders (Gupta et al. 2023; Bashir et al.

2023), mental state recognition (Yadav et al. 2023), and

Parkinson’s disease (Chandran and Perumalsamy 2018).

Additionally, EEG plays a crucial role in applications such

as brain-computer interfaces (BCI) (Ma et al. 2023; Malan

and Sharma 2022; Kundu and Ari 2022), and drowsiness

detection (Khare and Bajaj 2022), offering valuable

insights into brain activity for both clinical and cognitive

research. The ability of machine learning models, espe-

cially those trained on physiological signals like EEG

recordings (Sanei and Chambers 2013), to detect seizure

activity automatically has shown impressive potential

(Sundaram et al. 1999). These models can offer precise and

timely insights into the occurrence of seizures using the

complex patterns (Amengual-Gual et al. 2019) and corre-

lations found in the EEG data (Gotman and Gloor 1976).

This allows for early intervention and the development of

customized treatment strategies. A high-dimensional fea-

ture space with many features contributed by each channel

is often generated by multichannel EEG signals. The

sparser data and higher computational complexity in high-

dimensional areas are referred to as the curse of dimen-

sionality (Kondo et al. 2019). This may result in overfit-

ting, degraded model performance, and an increase in the

computing power needed for analysis (Cunningham 2008).

However, there are significant challenges in accurate sei-

zure detection due to the high dimensionality and com-

plexity of multichannel EEG data.

To address these challenges, this research integrates

sophisticated signal processing techniques, feature extrac-

tion strategies, and machine learning algorithms along with

the SHAP value-based (Lundberg and Lee 2017;Hasan et al.

2023) feature selection method to develop a robust and

interpretable seizure detection system. This proposed work

has employed DWT along with statistical and entropy-based

features. Finding the most useful features is essential to

improve the model’s performance and interpretability

because of the high dimensionality of the extracted features.

Further, the integration of SHAP values-based feature

selection and SA optimized (Van Laarhoven 1987) RF

classifier is demonstrated for seizure detection. The inherent

lack of interpretability (Frasca et al. 2024) and explainability

in the black-box models of machine learning algorithms

makes automated seizure detection methods extremely dif-

ficult to adopt and accept in clinical practice (Frasca et al.

2024). Transparency and confidence in the decision-making

process are essential for both patients and healthcare provi-

ders (Tallón-Ballesteros and Chen 2020), especially

regarding health and well-being issues.

This research work seeks to highlight the role that SHAP

values and SA-optimized RF classifiers (SA-RF) have

played in developing the field of automated seizure

detection and to show how they can have a transformative

effect on the management of epilepsy through investiga-

tion. To summarize, the main contribution of this proposed

work is as follows:

1. The integration of DWT with statistical and entropy-

based features aids in capturing the complexity and

distributional properties of the EEG signal.

2. Patient-specific feature selection based on SHAP

values resulted in good interpretability of the machine

learning model.

3. The class distribution is balanced by creating synthetic

samples of the minority class using SMOTE.

4. SA-optimized RF classifier showed enhanced perfor-

mance in distinguishing between seizure segments and

non-seizure segments.

5. A novel method for patient-non-specific feature selection

SHAP-RELFR has reported an excellent performance.

The next part of this paper is structured as follows: Sect. 2

reports the existing works. The detailed description of

materials and methods is covered in Sect. 3, which

includes the proposed approach, the datasets used, data

preparation, filtering, segmentation, decomposition, feature

extraction, feature selection, synthetic oversampling, and

classifiers that are employed in this work. Experimental

results and analysis are presented in Sect. 4. Additionally,

the findings are compared with existing works, and a dis-

cussion of their implications is provided. Section 5 sum-

marizes the key findings of the work and offers concluding

remarks on the effectiveness of the proposed framework in

EEG signal analysis for seizure detection.

Existing works

The relevant research on feature selection strategies, opti-

mization techniques, and different methodologies

employed in seizure detection is compiled in this sec-

tion. Filter methods, a set of feature selection techniques,

use parameters such as correlation coefficient and mutual

information (Hassan et al. 2022; Hasan et al. 2022; Mos-

tafiz et al. 2022) to rank features. These statistical metrics

are used to assess each feature’s importance apart from the

machine learning algorithms in use. The correlation-based

method (Mursalin et al. 2017), extended correlation-based

(Guo et al. 2018), and correlation coefficients with distance

correlation analysis (Ahmad et al. 2024) are a few feature

selection methods that were employed for seizure detec-

tion. Wrapper methods are a kind of feature selection

strategy where subsets of features are assessed according to
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how well they work with a particular machine learning

model. The wrapper feature subset selection method

(Wijayanto et al. 2021), and recursive feature elimination

(Wang and Lyu 2014; Hossain et al. 2024) are feature

selection strategies that have been used to enhance the

effectiveness of feature extraction. The work (Omidvar

et al. 2021) has employed a genetic algorithm technique to

pick more effective features, while the embedded methods,

such as LASSO (Least Absolute Shrinkage and Selection

Operator) (Peng et al. 2021) and tree-based methods using

Gini importance (Sánchez-Hernández et al. 2022) were

employed for feature selection in seizure detection.

Various optimization methods are employed for tuning

the model’s parameters in the field of machine learning.

When perfect solutions to difficult combinatorial opti-

mization problems are unfeasible (Macready and Wolpert

1996) or computationally prohibitive, a class of optimiza-

tion methods known as metaheuristic algorithms is

employed to address the problem effectively (Gandomi

et al. 2013; Yang 2010). Metaheuristic algorithms fre-

quently draw inspiration from physical processes, social

behavior, or natural events (Gandomi et al. 2013). To

iteratively enhance potential solutions, they also use

notions like mutation, selection, and adaptation. The

metaheuristic algorithms employed in seizure detection,

such as genetic algorithm (GA) (Xiong et al. 2022) which

is inspired by natural selection, show good performance.

Particle swarm optimization (PSO) (Behnam and

Pourghassem 2017; Yalcin et al. 2015) which is inspired

by the social behavior of bird flocking, and ant colony

optimization (ACO) (Behnam and Pourghassem 2015)

which is inspired by the foraging behavior of ants, have

also have been employed in seizure detection.

Many researchers have proposed different methods and

models in the past for the detection of epilepsy using

multichannel scalp EEG signals as shown in Fig. 1.

Every study reported here has utilized the CHB-MIT

dataset for experimental purposes. The proposed work

(Hassan et al. 2022) has employed DWT and statistical fea-

tures along with mutual information score to select the best

features. Min-max histogram approach for feature extraction

was proposed (Yang et al. 2020) along with time domain and

nonlinear features. Further, filter-embedded recursive feature

elimination (RFE) was employed for feature selection along

with SVM and XG Boost classifiers. The seizure detection

proposed (Orosco et al. 2016) has employed a stationary

wavelet transform, the spectral and energy features, and the

statistical parameter Lambda of Wilks for feature selection.

The study carried out (Behnam and Pourghassem 2017) has

decomposed the EEG signal using uniform discrete Fourier

transform (DFT), and the spectral features based on the DFT

and discrete Walsh-Hadamard transform (DWHT) were

extracted. To minimize the feature dimension, four statistical

kernel-based techniques were separately employed. Particle

swarm optimization (PSO) (Hossain et al. 2022) -probabilis-

tic neural network (PNN) has been used as a feature selection

and support vector machine (SVM) has been employed as a

classifier. Frequency band-based feature selection using

wavelet coefficients classified the EEG signal into seizure and

non-seizure segments (Chen et al. 2017). A parse rational

decomposition and Local Gabor Binary Pattern (LGBP) have

been used to extract the features for seizure detection (Samiee

et al. 2017). 1D LGBP features were computed for 8 rational

components for 23 channels, and then the RFE method was

applied to reduce the features, and these features were applied

to LR, RF, and linear SVM.

Unlike existing approaches that often rely on black-box

models or generic feature sets, this proposed work intro-

duces a novel SHAP-based framework that emphasizes

both patient-specific and patient-non-specific feature

selection. The integration of explainability, optimization,

and robust validation makes it not only more transparent

but also more adaptable for clinical application, addressing

a critical need for reliable and interpretable seizure detec-

tion solutions.

Fig. 1 Existing works on feature

selection using CHB-MIT

dataset
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Materials and methods

This section encapsulates the tools and processes employed

in the proposed seizure detection framework.

Proposed approach

Epileptic seizures are known to exhibit highly chaotic pat-

terns that include complex spike-wave patterns (Sanei and

Chambers 2013) and high voltage spikes (Sundaram et al.

1999). Considering this fact, this proposed novel framework,

as depicted in Fig. 2, attempts to classify the multichannel

EEG signal into seizure and non-seizure segments. The

processing steps involved in this proposed work are

explained in the following subsection. The experimentation

is carried out on the CHB-MIT and Seina multichannel EEG

datasets, as described in the next subsection.

EEG dataset

This proposed work has utilized two datasets, CHB-MIT

and Seina, to evaluate the effectiveness of the proposed

approach.

CHB-MIT dataset

The CHB-MIT scalp multichannel EEG dataset (Shoeb

et al. 2004; Shoeb and Guttag 2010; Shoeb 2009) used in

this work contains recordings of 24 pediatric patients with

ages ranging from 1.5 to 22 years. Table 1 shows the

detailed information about the patients included in the

dataset.

This database was generated and donated to Physionet

by Children’s Hospital Boston (CHB) and Massachusetts

Institute of Technology (MIT). This dataset is accessible

online at physionet.org (Goldberger et al. 2000; PhysioNet

2010). The scalp EEG recordings from pediatric individ-

uals were captured using a sampling frequency of 256 Hz

with a 16-bit resolution. The international 10–20 EEG

electrode placement system was used to record the EEG

signals.

Seina dataset

This dataset comprises EEG recordings of epileptic

patients, collected at the Unit of Neurology and Neuro-

physiology, University of Siena. This dataset is accessible

Fig. 2 The block diagram of the proposed framework for seizure detection demonstrating pre-processing, signal decomposition, feature

extraction, feature selection, synthetic oversampling, and classification
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online at physionet.org (PhysioNet 2020; Detti 2020; Detti

et al. 2020). The participants include 9 males (ages 25–71)

and 5 females (ages 20–58), monitored using Video-EEG

with a 512 Hz sampling rate. EEG electrodes were placed

following the international 10–20 system, and data acqui-

sition was performed using EB Neuro and Natus Quantum

LTM amplifiers with reusable silver/gold cup electrodes.

Data preparation

For the CHB-MIT time series dataset, the start time and

end time of seizure events are provided in a separate text

file. Throughout all experimentation 22 bipolar montage

channels named as FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3,

F3-C3, C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-

F8, F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ, P7-T7, T7-FT9,

FT9-FT10, FT10-T8 are utilized in this work. A total of

196 seizures are considered for experimentation purposes.

The total duration of seizure considered is 3 h, 15 min,

57 s. The non-seizure samples of data are randomly

selected from different files recorded at different times for

a specific patient. This proposed work has considered every

case as a patient.

In the Seina time series dataset, seizure event start and

end times are recorded in a separate text file, formatted as

hours, minutes, and seconds. The 28 EEG channels Fp1,

F3, C3, P3, F7, T3, T5, Fc1, Fc5, Cp1, Cp5, F9, Fz, Cz, Pz,

Fp2, F4, C4, P4, O2, F8, T4, T6, Fc2, Fc6, Cp2, Cp6, and

F10 are used in this experimentation. Table 2 shows the

details about the patients used in this proposed work. Seven

patients from the Siena dataset are considered in this work.

Patients PN00, PN06, PN09, PN10, PN12, PN13, and

PN14 are designated as patient 1 to patient 7, respectively.

Filter and segmentation

The EEG signal from 22 channels of the CHB-MIT dataset

and 28 channels of the Seina dataset is run through a 4th-

order Butterworth low-pass filter with a cut-off frequency of

64 Hz. Further, it is applied to a notch filter having a cutoff

frequency of 60 Hz for CHB-MIT and 50 Hz for the Seina

dataset. These filters aid in mitigating the noise resulting

from erroneous electrode placement, Sanei and Chambers

(2021) skeletal muscle contractions, ocular blinks (Gotman

and Gloor 1976), and interference from 60 Hz power lines

(Rampil 1998; Sanei andChambers 2013). In the passband, a

Butterworth filter offers amaximumflat response. Following

filtering, each EEG channel signal is divided into fixed-

length segments with a duration of 4 s to make a signal

statistically stationary (Sanei and Chambers 2021).

Decomposition using discrete wavelet transform
(DWT)

The wavelet transform is a powerful tool for signal analysis

that provides simultaneous localization in both time and

frequency domains. Unlike the Fourier transform, which

represents signals as infinite sine waves, the wavelet trans-

form decomposes signals using small, finite-duration

wavelets. This makes it particularly effective for analyzing

non-stationary signals. DWT is a strong tool for signal

decomposition analysis of non-stationary data (Rampil

1998), such as EEG (Strang and Nguyen 1996). A more

thorough analysis of the signal’s features ismade possible by

the DWT, which decomposes the signal into distinct com-

ponents corresponding to particular frequency ranges. The

DWT is a sampled version of the continuous wavelet trans-

form (CWT), designed to analyze signals at multiple scales.

The CWT for a signal x(t) is defined as:

Wða; bÞ ¼
Z 1

�1
xðtÞ 1ffiffiffi

a
p w

t � b

a

� �
dt ð1Þ

where, W(a, b) = wavelet coefficient at scale and transla-

tion, a = scaling parameter (controls frequency resolution),

Table 1 CHB-MIT scalp EEG dataset used in this proposed work

PID Gender/age

(years)

Number of

seizures

Seizure

duration

(seconds)

Patient 1 F/11 7 442

Patient 2 M/11 3 172

Patient 3 F/14 7 402

Patient 4 M/22 4 378

Patient 5 F/7 5 558

Patient 6 F/1.5 10 153

Patient 7 F/14.5 3 325

Patient 8 M/3.5 5 787

Patient 9 F/10 4 276

Patient 10 M/3 7 447

Patient 11 F/12 3 806

Patient 12 F/2 40 1475

Patient 13 F/3 12 828

Patient 14 F/9 8 169

Patient 15 M/16 20 1992

Patient 16 F/7 10 69

Patient 17 F/12 3 293

Patient 18 F/18 6 317

Patient 19 F/19 3 236

Patient 20 F/6 8 294

Patient 21 F/13 4 199

Patient 22 F/9 3 204

Patient 23 F/6 7 424

Patient 24 –/– 16 511
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b = translation parameter (controls time localization),

wðtÞ= mother wavelet function. For the DWT, the scaling

and translation parameters are discretized as follows:

a ¼ 2 j, b ¼ k � 2 j where, a = scale index (determines the

frequency band), b = translation index (controls time shift).

The approximation and detail coefficients are given as:

Aj½n� ¼
X
k

h½k � 2n� � x½k� ð2Þ

Dj½n� ¼
X
k

g½k � 2n� � x½k� ð3Þ

where, Aj½n� = approximation coefficients at level j, Dj½n�=
detail coefficients at level j, h[k]= low-pass filter coeffi-

cients, g[k] = high-pass filter coefficients, and x[k] =dis-

crete-time signal.

This work has employed a 6-level DWT to further

decompose the segmented signal into seven sub-bands to

perform a multi-resolution analysis. The purpose of this

decomposition is to capture both low and high frequency

components of the signal across different time scales, which is

particularly beneficial for analyzing non-stationary signals

like EEG. The DWT is particularly suited for analyzing non-

stationary biomedical signals like EEG, as it allows the

extraction of both time and frequency information simulta-

neously.At each level of decomposition, the signal is split into

approximation coefficients which represent the low-fre-

quency, or coarse components and detail coefficients, which

capture high-frequency, or fine details,. The Daubechies 4

(db4) wavelet is selected as the mother wavelet due to its

smoothness, compact support, and good localization proper-

ties, making it well-suited for analyzing biomedical signals.

After decomposing the signal up to 6 levels, the coef-

ficients Ca6, Cd6, Cd5, Cd4, Cd3, Cd2, and Cd1 are

obtained. From these, the approximation coefficient Ca6

and detail coefficients Cd6, Cd5, Cd4, and Cd3 are retained

for further feature extraction, while Cd1 and Cd2 are dis-

carded. This selection effectively focuses the analysis on

the low-frequency region below 64 Hz, which encompasses

most of the clinically relevant EEG bands such as delta,

theta, alpha, and beta that are typically associated with

seizure patterns. These selected coefficients are derived

from every segment of each EEG channel, forming the

basis for extracting meaningful features used in the further

steps of processing.

Feature extraction

Feature extraction is an essential stage in the analysis of

EEG signals for seizure detection. The process involves

obtaining meaningful attributes from the EEG signal

(Gotman and Gloor 1976) that can help in distinguishing

between seizure and non-seizure segments. The estimated

wavelet coefficients Ca6, Cd6, Cd5, Cd4, and Cd3 together

have formed a coefficient feature set for each segment. The

feature vector contains seven statistical and three entropy-

based features, forming a set of a total of ten features

(Dokare and Gupta 2025). The measure of variability and

dispersion of the wavelet coefficients can be understood

using statistical features (Rampil 1998). The statistical

features, like a minimum signal value, maximum signal

value, mean, standard deviation, variance, skewness, and

kurtosis of the coefficients, are determined. The complexity

and irregularity of the signal are captured by entropy fea-

tures. Hence, this proposed work has used entropy-based

features like sample entropy (Richman and Moorman

2000), permutation entropy (Bandt and Pompe 2002), and

Shannon entropy (Acharya et al. 2018) of the wavelet

coefficients along with statistical features. Combining two

sets of features provides a richer and more detailed char-

acterization of EEG signals, which aids in the identification

of seizure patterns. These features are defined as follows:

Minimum ¼minfx1; x2; . . .; xng ð4Þ

Maximum ¼maxfx1; x2; . . .; xng ð5Þ

Mean ¼�x ¼ 1

n

Xn
i¼1

xi ð6Þ

Variance ¼
P

ðxi � �xÞ2

n
ð7Þ

Standard deviation ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi � �xÞ2

n

s
ð8Þ

Table 2 Seina scalp EEG

dataset used in this proposed

work

PID Gender/age (years) Number of seizures Seizure duration (seconds)

Patient 1 M/55 5 325

Patient 2 M/36 5 282

Patient 3 F/27 3 203

Patient 4 M/25 10 338

Patient 5 M/71 4 290

Patient 6 F/34 3 264

Patient 7 M/49 4 163
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Skewness ¼g1 ¼
m3

m
3
2

2

ð9Þ

where m3 ¼ 1
n

Pn
i¼1ððxi � �xÞ3Þ and m2 ¼ 1

n

Pn
i¼1ððxi � �xÞ2Þ

Kurtosis ¼ 1

n

Pn
i¼1ðxi � �xÞ4

S4
ð10Þ

Consider a time-series data set of length

N ¼ fx1; x2; x3; . . .; xNg, a template vector of length m,

such that XmðiÞ ¼ fxi; xiþ1; xiþ2; . . .; xiþm�1g and the dis-

tance function d½XmðiÞ;Xj�ði 6¼ jÞ is to be the Chebyshev

distance, then

Sample entropy ¼ Es ¼ � ln
a

b
ð11Þ

a and b are number of template vector pairs having

d½Xmþ1ðiÞ;Xmþ1ðjÞ�\r and d½XmðiÞ;XmðjÞ�\r respectively.

Where N is the number of data points, m is an embedding

dimension, and r is the tolerance. For a time series data, let

p be a probability distribution associated with it, where pi
are the frequencies associated with i possible permutation

patterns and D is the embedding dimension, therefore

i ¼ 1; 2; . . .;D!.

Permutation entropy ¼ Ep ¼ �
XD!
i¼1

Pi log2 Pi ð12Þ

Shannon entropy ¼ EshðXÞ ¼ �
XN
i¼1

pðxiÞ log2 pðxiÞ ð13Þ

where pðxiÞ is the probability occurrence of feature values

from x1 to xN .

SHAP values for feature selection

The dimensionality of the feature space rises with the

number of features included, making it more challenging

for machine learning models to prevent overfitting and

achieve good generalization. By choosing a subset of the

most useful features (Cunningham 2008), feature selection

helps to overcome this problem (Kondo et al. 2019). Ten

features per channel indicate diverse features extracted

from the EEG signal. Due to the variability in seizure

patterns among patients, not all ten features may effec-

tively distinguish between seizure and non-seizure seg-

ments. The diversity in features helps capture different

aspects of neural activity related to seizures. While rich

feature spaces add complexity to the model, they may

include redundant or non-informative features for seizure

detection. Intense computing demands might arise when

training machine learning models on a high-dimensional

feature space (Cunningham 2008). SHAP is a powerful tool

in the field of Explainable AI (XAI) (Frasca et al. 2024),

offering valuable insights into how models make their

predictions and serving as a viable option for feature

selection by attributing contributions of each feature to the

model’s output in a transparent and interpretable manner.

SHAP (SHapley Additive exPlanations) (Shapley 1953)

is an advanced interpretability method that explains how

individual input features contribute to a machine learning

model’s prediction (Ahmad et al. 2024; Lundberg and Lee

2017; Tallón-Ballesteros and Chen 2020). It is based on the

concept of Shapley values from cooperative game theory,

originally designed to fairly distribute payouts among

players depending on their contributions to a collective

result.

In the context of machine learning, SHAP treats each

feature as a player in a game where the goal is to predict an

outcome. For any given input instance, SHAP computes

how much each feature has contributed to pushing the

model’s output away from the average prediction (called

the expected value) of the model. To calculate a SHAP

value for a feature, the method considers all possible

combinations (subsets) of the other features and evaluates

the model’s output with and without the presence of the

target feature. The average of all these marginal contribu-

tions, weighted by the size of the subset, gives the SHAP

value (Lundberg and Lee 2017). This ensures a fair and

mathematically consistent way of attributing importance.

SHAP values uphold several important theoretical

properties that make them a reliable and consistent tool for

model interpretability. One such property is local accuracy,

which ensures that the sum of all SHAP values for a par-

ticular instance equals the model’s actual prediction for

that instance. This guarantees that the explanation fully

accounts for the output. Another key property is missing-

ness, meaning that if a feature is not present in the model or

not used in a particular prediction, it is assigned a SHAP

value of zero, indicating no contribution. Lastly, consis-

tency ensures that if a model changes in such a way that a

feature contributes more to the prediction, the SHAP value

for that feature does not decrease. Together, these proper-

ties provide a solid mathematical foundation for SHAP’s

fairness, reliability, and interpretability in explaining

complex model behavior.

The SHAP package of Python is used to estimate the

SHAP values and rank the features based on their impor-

tance. This proposed work has employed a TreeExplainer,

a tree-based model, and a probability-based link function.

Features that have greater absolute SHAP values are con-

sidered to have a greater impact on model predictions. For

each feature in the feature set, the mean absolute SHAP

values for all samples are calculated. These SHAP values

indicate the relative contribution of each feature to the

model predictions. Based on the mean absolute SHAP

values, the top features are chosen that had the biggest
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impact on the model predictions. The number of features

that were chosen had been determined empirically to

reduce dimensionality and maintain the most informative

features. In the machine learning model f for seizure

detection task with i features employed, and the value

function fxðSÞ is typically the model’s prediction when only

features in subset S are used for instance x, the SHAP value

/i (Tallón-Ballesteros and Chen 2020) is given as:

/i ¼
X

S�Fn if g

Sj j!:ð Fj jÞ � ð Sj j � 1Þ!
Fj j! ½fx [ if g � fx Sð Þ� ð14Þ

where

• F is the set of all features.

• S is a subset of features without i.

• fxðSÞ is model output with subset S.

• fx [ if g is model output with subset S plus feature i.

In this proposed work, SHAP is used not just to interpret

model outputs, but also for feature selection by identifying

and ranking features that contribute the most to seizure

detection in EEG data. This use of SHAP ensures that

selected features are not only statistically significant but

also clinically interpretable, offering transparency in a

typically black-box system. This makes SHAP particularly

valuable in critical applications like healthcare, where

understanding model decisions is as important as their

accuracy.

This proposed work has carried out two experiments for

feature selection. The first one involves selecting patient-

specific features using the SHAP value, and the second is a

novel proposed SHAP-RELFR method that determines a

common set of features from the patient-specific feature

ranking and its relative frequency.

SHAP-based patient-specific feature selection

In the case of patient-specific feature selection, the feature

ranking is determined for each patient independently, and the

model of that patient will use those features for classification.

For calculating the SHAP value of each feature, RF classi-

fication model is trained using a dataset containing 10 fea-

tures extracted from 22 EEG channels of CHB-MIT and 28

channels of Seina dataset. This trained RF model is used to

calculate SHAP values, which measure the contribution of

each feature to the model’s predictions. The global impor-

tance of each feature is calculated by averaging the SHAP

values across every instance used for training.

SHAP importanceðiÞ ¼ 1

M

XM
j¼1

/i;j

�� �� ð15Þ

where M is the number of samples, and /i;j is the SHAP

value for feature i in sample j.

Following that, the features are ranked according to their

mean absolute SHAP values for each patient. All ten fea-

tures are ranked according to their feature importance from

rank R1 to R10. The top 5 and top 3 features are selected

for further analysis.

Patient-non-specific feature selection using SHAP-RELFR
method

This work has proposed a novel method, SHAP-RELFRF

to determine common features that are employed to train a

model for all patients. Once the patient-specific feature

ranking is obtained using SHAP values, the features com-

mon to all patients are estimated using a relative frequency

(RELFR) of features ranked. Figure 3 presents the flow

chart of the proposed SHAP-REFLR method. The feature

importance for each patient is estimated using the SHAP

value before the application of this algorithm and ranked

from 1 to 10. The features are numbered as 0: Min, 1: Max,

2: Mean, 3: Variance, 4: Std_dev, 5: Kurtosis, 6: Skewness,

7: Sample_ent, 8: Permutation_ent, 9: Shannon_ent. The

algorithm starts by initializing feature F as 0 and ranking R

as 1. In this implementation, rank 5 and a total of 10 fea-

tures are taken into account. The frequency of occurrence

of every feature under each rank across all patients is

estimated. Further, the percentage of occurrence of every

feature under each rank across all patients is determined.

This percentage of occurrence provides the feature

importance irrespective of the patient.

The features with a non-zero value of percentage of

feature importance can be selected under rank 1 since the

features under the rank 1 category are fewer in number and

contribute more to seizure detection.

Synthetic minority oversampling technique
(SMOTE)

In many real-world classification problems, especially in

medical and biomedical domains like seizure detection,

datasets often suffer from class imbalance. This means that

one class (typically the normal or non-seizure class) con-

tains significantly more samples than the other class (e.g.,

seizure events). When a classifier is trained on such data, it

tends to favor the majority class, leading to poor detection

performance for the minority class, which is often the

clinically important one.

To address this issue, the Synthetic Minority Oversam-

pling Technique (SMOTE) (Chawla et al. 2002) is

employed as a data-driven approach for class balancing

(Fernández et al. 2018). SMOTE is an oversampling

technique that creates new synthetic samples for the

minority class rather than merely duplicating existing ones.

The key idea is to expand the feature space of the minority
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class in a more meaningful and generalized way, helping

the classifier to better learn its characteristics. It generates

new samples by interpolating between existing samples of

the minority class. For each minority class instance,

SMOTE identifies its k nearest neighbors within the same

class. It then randomly selects one of these neighbors and

creates a new synthetic data point along the line segment

that connects the original sample and the selected neighbor.

This process introduces new and realistic samples that lie

within the feature space of the minority class, thereby

helping to balance the dataset and improve model perfor-

mance, particularly in cases of class imbalance. This results

in a more generalized decision boundary and helps prevent

overfitting that often arises from mere replication.

When addressing class imbalance using SMOTE, it is

critical to apply the method correctly within the model

evaluation pipeline, particularly during cross-validation, to

avoid data leakage. Data leakage occurs when information

from outside the training data influences the model during

evaluation, leading to artificially inflated performance

metrics and unreliable results. We have employed SMOTE

exclusively on the training data within each 5 cross-vali-

dation folds to address class imbalance without introducing

data leakage. This is implemented by integrating SMOTE

into a machine learning pipeline along with the classifier.

The pipeline ensures that, for every fold during cross-

validation, SMOTE is applied only to the training subset,

and the model is evaluated on the test subset.

This approach preserves the independence of the test

data, avoids contamination from synthetic samples, and

provides performance metrics that accurately reflect the

model’s ability to generalize to unseen data.

Classification

An overall feature vector is formed by concatenating the

data of selected features from 22 channels or 28 channels.

The seizure segment is labeled as ’1’ and the non-seizure

segment as ’0’. The final feature set is shuffled and divided

into 70%-30% as the training–testing set.

Simulated annealing (SA) optimized RF

After data splitting, the RF classifier is trained using the

training data. The selection of hyperparameters signifi-

cantly impacts how well RF classifiers function. Conven-

tional techniques, such as grid search, may not necessarily

produce the best results and can be computationally

expensive. A more effective method is provided by simu-

lated annealing (SA), which explores the hyperparameter

space adaptively (Gandomi et al. 2013). In this work, we

propose the SA method to optimize the hyperparameters of

RF classifiers. SA is a powerful metaheuristic optimization

method created based on the actual metallurgical process of

annealing (Gandomi et al. 2013; Van Laarhoven 1987).

This probabilistic optimization approach involves heating

and then progressively cooling a material to remove defects

and enhance its crystalline structure (Suman and Kumar

2006). To solve combinatorial optimization issues, Kirk-

patrick (1983) initially presented this approach in 1983. By

concentrating on promising areas of the hyperparameter

space, SA can decrease the number of evaluations needed

and raise the possibility of locating optimal or nearly

optimal solutions. This is made possible by the proba-

bilistic acceptance criterion. The main aim of SA is to

minimize (or maximize) an objective function f(x) where

x represents a set of variables or hyperparameters. The

steps in the simulated annealing algorithm are as follows:

1. Set the initial hyperparameters as x0 and compute the

objective function value f ðx0Þ.
2. Set an initial temperature as T0 that controls the

probability of accepting worse solutions.

3. Define a cooling rate a. Update the temperature Tk for

every k iteration such that Tkþ1= aTk.
4. Generate a neighboring solution x0 by slightly modi-

fying the current solution x.

Fig. 3 Flow chart of SHAP-RELFR method for patient-non-specific

feature selection
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5. Determine the change in the objective function value

DE= f ðx0Þ � f ðxÞ. If DE\0, then accept x0; otherwise,
accept x0 with probability P.

6. Update the current solution x to the new solution x0 if
accepted. Repeat the process, reducing the temperature

according to the cooling schedule, until a stopping

criterion is met.

The value of hyperparameters n_estimators, max_depth,

initial_temperature, cooling_rate, and max_iterations are

considered as 50, 5, 100, 0.95, and 100, respectively.

Performance metrics

The effectiveness of classifiers in discriminating between

seizure and non-seizure segments is evaluated by estimat-

ing metrics such as accuracy, precision, specificity, sensi-

tivity, F1-score, and AUC score. These metrics are defined

based on the confusion matrix values as true positive (TP),

true negative (TN), false positive (FP), and false negative

(FN). The performance metrics used are defined as follows:

Accuracy: This measure summarises the model’s per-

formance across two classes. It is a ratio of the number of

correctly classified labels to the total number of labels.

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð16Þ

Precision/PPV: This metric gauges how well the model

classifies a label as positive. It is a ratio of correctly clas-

sified seizure segments to the total number of segments

classified as seizure (correctly or incorrectly). High preci-

sion means fewer false positives.

Precision=PPV ¼ TP

TPþ FP
ð17Þ

where PPV is the positive predictive value.

Sensitivity/Recall/TPR: It refers to how many of the

actual seizure segments can be predicted correctly by the

model. The ratio of correctly predicted seizure segments to

all actual seizure segments.

Sensitivity=Recall=TPR ¼ TP

TPþ FN
ð18Þ

where TPR is the true positive rate.

Specificity/Selectivity/TNR: It is a ratio of the number

of correctly detected non-seizure segments to the total

number of actual non-seizure segments.

Specificity=selectivity=TNR ¼ TN

TN þ FP
ð19Þ

where TNR is the true negative rate.

F1-score: It is a harmonic mean of recall and precision.

It balances both metrics, especially when the dataset is

imbalanced.

F1� score ¼ 2
precision � recall
precisionþ recall

¼ TP

TPþ 1
2
ðFPþ FNÞ

ð20Þ

Area Under the Receiver Operating Characteristic Curve

(AUC-ROC): It is one of the most widely used metrics in

medical diagnosis. It assesses a classifier’s ability to dis-

tinguish between two classes.

Experimental results and analysis

All experiments are carried out using the CHB-MIT and

Seina datasets on an 11th-generation i5 processor with 16

GB of RAM. For every patient in the dataset, an inde-

pendent experiment is conducted.

Results of feature selection

After obtaining the statistical and entropy-based features,

an individual model is trained for each patient, and the

feature ranking is obtained in each case. This section

covers the results obtained from patient-specific and

patient-non-specific feature selection approaches.

Results of SHAP-based patient-specific feature selection

The results of feature selection for each patient are

described in this section. The SHAP values obtained for

features Min, Max, Mean, Variance, Std_dev, Kurtosis,

Skewness, Sample_ent, Permutation_ent, and Shannon_ent

for both datasets are shown in Fig. 4. The summary plots in

Fig. 4(a) and Fig. 4(b) show the features ranked for patient

1 as per the importance score estimated using the SHAP

values using CHB-MIT and Seina datasets, respectively. A

wider spread of dots for feature Shannon_ent indicates that

it has a greater influence on the model’s predictions for

patient 1 across both datasets. Feature Shannon_ent exhi-

bits the highest SHAP value, whereas feature Variance

shows the lowest across both datasets, as depicted in Fig. 4.

For model interpretation and feature selection, the SHAP

summary bar graph is an effective way to visualize feature

importance, as shown in Fig. 5. This SHAP summary bar

graph illustrates the average absolute impact of each fea-

ture on the model’s output. Shannon_ent, represented by

the first bar, exhibits the highest mean SHAP value, indi-

cating that it is the most influential feature in the model’s

prediction process for both datasets. In contrast, Variance,

positioned last, has zero SHAP value, suggesting minimal

contribution to the model’s output. This ranking reflects the

relative importance of features, where higher bars signify

stronger influence, aiding in interpretability in feature

selection decisions.

   85 Page 10 of 24 Cognitive Neurodynamics           (2025) 19:85 

123



This kind of graph highlights the features that most

influence the model’s predictions by ranking them

according to their mean absolute SHAP values. The feature

ranking obtained for patients of the CHB-MIT and Seina

datasets is presented in Tables 3 and 4, respectively. Fea-

ture Min is represented by the number 0 and feature

Shannon_ent by the number 9. Tables 3 and 4 show that

the feature importance rankings obtained through SHAP

value analysis demonstrate a notable level of consistency

across both the CHB-MIT and Siena datasets. This obser-

vation indicates that the model identifies and leverages

similar underlying patterns and discriminative features in

both datasets, regardless of potential variations in patient

profiles or recording conditions. Such consistency rein-

forces the robustness and generalizability of the selected

features, highlighting their relevance in accurately

Fig. 4 SHAP summary plots illustrating the contribution of features

towards seizure classification for patient 1 using a the CHB-MIT

dataset and b the Siena dataset. The color gradient represents the

feature value (low to high), while the horizontal axis indicates the

SHAP value, reflecting the impact of each feature

Fig. 5 SHAP summary bar graphs showing the average feature

importance for seizure classification in patient 1 using a the CHB-

MIT dataset and b the Siena dataset. The bars represent the mean

absolute SHAP values, indicating the overall contribution of each

feature to the model’s predictions
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distinguishing between seizure and non-seizure activities

across different datasets. The top 5 and the top 3 features

are selected based on their ranking. Three feature sets are

formed for every patient for further analysis are F10, F5,

and F3. Feature set F10 contains 10 original features, F5

contains the top 5 selected features, and F3 contains the top

3 features.

As shown in Table 3, when feature Shannon_ent is

considered, it is observed to occur 16 times out of 24 cases

of the CHB-MIT under the rank 1 (R1) category, yielding

an occurrence of 66.7%. Similarly, Std_dev and Sam-

ple_ent have obtained occurrences of 25% and 8.33%,

respectively under the category rank 1. Considering all 24

cases, Shannon_ent has attained maximum feature

importance in percentage under category rank 1, indicating

this single feature effectively contributes to seizure detec-

tion for all patients. To apply a final feature set to the

classifier for all patients, features with non-zero values

under the category rank 1 are considered. Hence, Shan-

non_ent, Std_dev, and Sample_ent are three features

selected as common features for all patients.

In the case of the Seina dataset, as shown in Table 4,

Shannon_ent has ranked 1 across all patients, and Variance

has ranked last. As shown in Tables 3 and 4, although the

ranking of a few individual features differs slightly

between the CHB-MIT and Seina datasets, the overall trend

in feature importance remains largely consistent. As illus-

trated in Table 4, Shannon_ent has ranked 1 across all

patients, yielding an occurrence of 100% under the

Table 3 Feature ranking obtained using the SHAP value for each

patient in the CHB-MIT dataset

Feature rank

PID Top 5

Top 3

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Patient 1 9 4 5 1 7 8 0 2 6 3

Patient 2 9 4 0 1 5 7 2 6 8 3

Patient 3 4 9 0 1 7 5 8 2 6 3

Patient 4 4 9 1 5 8 7 0 6 2 3

Patient 5 7 9 4 5 8 0 6 1 2 3

Patient 6 7 9 4 5 6 8 1 0 4 3

Patient 7 9 7 8 4 1 5 0 2 6 3

Patient 8 9 4 0 7 1 6 5 8 4 3

Patient 9 4 0 8 1 2 9 7 5 6 3

Patient 10 9 4 7 5 8 0 1 6 2 3

Patient 11 4 0 1 7 5 8 6 9 2 3

Patient 12 9 5 7 8 4 0 1 6 2 3

Patient 13 9 7 8 5 4 1 6 0 2 3

Patient 14 9 7 5 8 4 1 0 6 2 3

Patient 15 9 4 1 5 0 7 8 6 2 3

Patient 16 9 7 4 8 1 0 5 2 6 3

Patient 17 9 4 7 5 8 1 0 2 6 3

Patient 18 4 9 1 0 6 5 8 7 2 3

Patient 19 9 7 5 6 8 0 1 4 3 2

Patient 20 9 8 7 6 5 0 1 4 2 3

Patient 21 9 4 7 0 6 8 5 1 2 3

Patient 22 4 7 9 0 2 1 8 6 5 3

Patient 23 9 7 4 5 0 1 8 6 2 3

Patient 24 9 4 7 5 1 0 8 2 6 3

PID: Patient ID, R1 to R10: Rank 1 to rank 10, Numbers 0 to 10

indicates feature numbers, 0: Min, 1: Max, 2: Mean, 3: Variance, 4:

Std_dev, 5: Kurtosis, 6: Skewness, 7: Sample_ent, 8: Permuta-

tion_ent, 9: Shannon_ent

Table 4 Feature ranking obtained using the SHAP value of patients in

the Seina dataset

Feature rank

PID Top 5

Top 3

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Patient 1 9 5 4 7 8 1 0 6 2 3

Patient 2 9 4 7 1 5 8 0 6 2 3

Patient 3 9 4 0 8 1 5 7 6 2 3

Patient 4 9 7 4 5 0 1 6 8 2 3

Patient 5 9 7 6 0 1 4 8 5 2 3

Patient 6 9 7 5 8 6 0 4 1 2 3

Patient 7 9 4 0 5 6 1 2 8 7 3

Table 5 Patient-non-specific feature estimation: feature importance

obtained in percentage under the category rank 1 to rank 5 across all

24 patients from the CHB-MIT dataset

Features Feature importance in percentage

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Shannon_ent 66.7 20.8 4.17 0 0

Std_dev 25 33.3 16.7 4.2 12.5

Sample_ent 8.33 29.2 25 8.3 8.3

Kurtosis 0 4.17 12.5 37.5 12.5

Max 0 0 16.7 16.7 16.7

Min 0 8.3 12.5 12.5 8.3

Permutation_ent 0 0 12.5 12.5 20.8

Skewness 0 0 0 8.3 12.5

Mean 0 0 0 0 8.3

Variance 0 0 0 0 0
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category rank 1. Whereas, Sample_ent, Std_dev and Kur-

tosis have obtained occurrences of 42.86%, 42.86% and

14.29% respectively under the category rank 2.

The patient-specific features obtained are further utilized

to derive patient-non-specific features through the proposed

novel SHAP-RELFR methodology.

Results of SHAP-RELFR patient-non-specific feature
selection

The patient-non-specific features selected for the CHB-

MIT dataset and the Seina dataset using our proposed

SHAP-RELFR method are depicted in Tables 5 and 6,

respectively. This has determined the overall ranking of

each feature across all patients using the findings reported

in Tables 3 and 4. As reported in Tables 3 and 4, the

ranking of each feature for each patient indicates the

importance of that feature in the seizure discrimination

task. For instance, feature 9 (Shannon entropy), which is

ranked under Rank 1 (R1), is the most important for most

of the patients of the CHB-MIT dataset and all patients of

the Seina dataset.

To obtain the patient independent ranking of the feature,

the occurrence of each feature under each rank (R1 to R10)

is determined. For the CHB-MIT dataset, feature 9 has

occurred 16 times out of a total of 24 cases. A similar

process is followed for other features by referring the

Table 3. Since the main objective is to reduce the feature

dimension, the top 5 ranking values are considered for the

estimation of the patient independent features. After

determining the occurrence of a feature within a certain

category (rank 1 to rank 5), the percentage of occurrence/

relative frequency of each feature is estimated from a total

of 24 patients of the CHB-MIT dataset. Hence, the feature

importance of feature 9 (Shannon_ent) in percentage is

estimated as 66.7, while for feature 4 (Std_dev) and feature

7 (Sample_ent), the feature importance in percentage is 25

and 8.33, respectively. And, the other features have an

importance score of zero under the Rank 1 category. A

similar procedure is followed to obtain the feature impor-

tance of each feature under other categories. The final

selected features for patient-non-specific approach using

our proposed novel approach are Shannon_ent, Std_dev,

and Sample_ent. We have considered features obtained

under the Rank 1 category, since the number of features

under this category will be the least in number.

For the Seina dataset, as illustrated in Table 6, feature 9

(Shannon_ent) consistently ranked 1 across all 7 patients,

achieving a feature importance score of 100%. Similarly,

feature 7 (Sample_ent), feature 4 (Std_dev), and feature 5

(Kurtosis) are identified under the rank 2 category, with

each obtaining a feature importance score of 42.86%,

42.86%, and 14.29%, respectively. In the patient-non-

specific approach, we selected features from both rank 1

and rank 2 categories. As a result, the final set of common

features applied across all 7 patients includes: Shan-

non_ent, Sample_ent, Std_dev, and Kurtosis.

The effectiveness of the selected features is validated by

evaluating their performance using a Simulated Annealing-

optimized Random Forest (SA-RF) classifier.

Results of classification

The results obtained using this proposed approach for both

patient-specific and patient-non-specific feature selection

are evaluated by applying the selected features to a SA-RF

classifier. This section presents a comparative analysis of the

results obtainedwith andwithout the application of SMOTE,

aiming to evaluate its impact on model performance.

Classification results using patient-specific feature selection

Three experiments are conducted using three feature sets:

F10, F5, and F3, applied individually to the SA-RF model

for each patient in both datasets. The hyperparameters of

the model are optimized using simulated annealing with

5-fold cross-validation. To ensure that the optimized

hyperparameters are robust and do not overfit the training

data, 5-fold cross-validation is used.

For the CHB-MIT dataset, the performance metrics

obtained using feature sets F10, F5, and F3 with the

application of SMOTE for each patient are illustrated in

Fig. 6, Fig. 7, and Fig. 8. As shown in Fig. 6(a), the

accuracy achieved with features F10 and F5 exceeds 93%

for all patients, except for patient 15, where it is reduced by

5%.

Table 6 Patient-non-specific feature estimation: feature importance

obtained in percentage under the category rank 1 to rank 5 for 7

patients from the Seina dataset

Features Feature importance in percentage

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Shannon_ent 100 0 0 0 0

Std_dev 0 42.86 28.56 0 0

Sample_ent 0 42.86 14.29 14.29 0

Kurtosis 0 14.29 14.29 28.56 14.29

Max 0 0 0 14.29 28.56

Min 0 0 28.56 14.29 14.29

Permutation_ent 0 0 0 28.56 14.29

Skewness 0 0 14.29 0 28.56

Mean 0 0 0 0 0

Variance 0 0 0 0 0
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According to Fig. 6b, the precision achieved is greater

than 90% for each patient when utilizing F10 and F5, except

for 15. The sensitivity obtained is above 90% for all patients,

except for patients 12, 15, and 21when using F10, F5 and F3,

as depicted in Fig. 7a. It is observed that all three feature sets

show an almost similar trend across all patients.

However, as demonstrated in Fig. 7(b), the model’s

specificity remains exceptional across all cases, achieving a

more than 96% for every patient except for patient 15 using

F10 and F5. The F1-score obtained is greater than 90%

using F10 and F5, except for patients 12 and 15, as illus-

trated in Fig. 8(a). Additionally, the AUC score exceeds

0.9 for all patients except for patients 12 and 15 when

utilizing F10 and F5, as shown in Fig. 8(b).

Table 7 presents a detailed comparison of average per-

formance metrics for seizure detection using three feature

sets, original 10 features (F10), top 5 features (F5), and top

3 features (F3), which are evaluated with and without the

application of SMOTE. This analysis highlights the impact

of feature reduction and oversampling on classification

performance. Notably, even with reduced feature sets (F5

and F3), the model maintains comparable accuracy, pre-

cision, and AUC to the original F10, indicating that feature

reduction does not significantly compromise performance.

The application of SMOTE further enhances the results,

particularly in terms of sensitivity and F1-score, which are

crucial for reliable seizure detection.

For instance, the sensitivity improves from 85.26 to

94.03% for F3 and from 87.90 to 95.08% for F10 when

SMOTE is applied. Although a slight decrease in speci-

ficity is observed with SMOTE, the overall classification

ability remains strong. These findings suggest that effective

feature selection, combined with SMOTE, can lead to

efficient and accurate seizure detection using fewer fea-

tures, supporting the goal of computational efficiency

without sacrificing diagnostic performance.

In the case of the Seina dataset, the performance metrics

obtained using the original 10 features (F10), the top 5

selected features (F5), and the top 3 selected features (F3)

by the application of SMOTE are illustrated in Fig. 9. The

accuracy for patients 1, 4, 6, and 7 exceeds 95%, while for

patients 2, 3, and 5 it remains above 91%, as depicted in

Fig. 6 Patient-specific feature

selection with SMOTE applied

to all patients from the CHB-

MIT dataset using three feature

sets: original 10 features (F10),

top 5 features (F5), and top 3

features (F3). Results are

presented for a Accuracy and

b Precision
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Fig. 9(a). Precision results, shown in Fig. 9b, indicate that

patients 1, 4, 6, and 7 maintain values above 95%, whereas

patients 2 and 3 achieve over 91%. The sensitivity values,

presented in Fig. 9c, reveal a maximum of 98% and a

minimum of 89% for patients 2 and 3. As demonstrated in

Fig. 9d, the specificity ranges from 92 to 100%. Figure 9e

highlights F1-score values, which lie between 91% and

99%. Lastly, the AUC results span from 0.90 to 0.99, as

illustrated in Fig. 9f.

Using the Seina dataset, Table 8 presents a comparative

evaluation of classification performance with and without

the application of SMOTE across three sets of features: the

original 10 features (F10), the top 5 selected features (F5),

and the top 3 selected features (F3). With SMOTE applied,

the model shows slightly improved or consistent accuracy,

precision, and sensitivity across all feature sets compared

to the non-SMOTE scenario. For example, the average

accuracy improved from 95.07% (F10 without SMOTE) to

95.27% (F10 with SMOTE), and the sensitivity increased

from 93.53 to 94.46%. Similarly, the AUC values show a

noticeable enhancement, reaching up to 0.9441 with

SMOTE for F10, compared to 0.9372 without it. Impor-

tantly, even with reduced features (F5 and F3), the drop in

performance metrics is minimal, indicating that the pro-

posed feature reduction method retains significant dis-

criminative power while reducing dimensionality. Overall,

these results affirm that applying SMOTE enhances the

robustness of the classifier, and reducing features does not

significantly compromise the model’s performance.

Classification results using patient-non-specific feature
selection

As discussed in Section 4.1.2, the features Shannon_ent,

Std_dev, and Sample_ent are selected under the rank 1

category for the patient-non-specific approach using the

CHB-MIT dataset. These features, identified through our

systematic and novel feature selection method, represent a

common feature subset suitable for the seizure detection

model across all patients in the CHB-MIT dataset. For the

Seina dataset, the patient-non-specific feature set includes

Shannon_ent, Std_dev, Sample_ent, and Kurtosis.

Fig. 7 Patient-specific feature

selection with SMOTE applied

to all patients from the CHB-

MIT dataset using three feature

sets: original 10 features (F10),

top 5 features (F5), and top 3

features (F3). Results are

presented for a Sensitivity and

b Specificity
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However, since Shannon_ent alone (a rank 1 feature) did

not yield satisfactory performance for certain patients in

the Seina dataset, additional features from the next highest

rank (rank 2) are incorporated to enhance the generaliza-

tion, resulting in a robust feature set of four features for the

patient-non-specific model.

A separate SA-RF model is trained for each patient in

the CHB-MIT dataset using the three common features

identified through our method and the findings are reported

in Table 9. Similarly, for the Seina dataset, an individual

SA-RF model is trained for each patient using the four

Fig. 8 Patient-specific feature

selection with SMOTE applied

to all patients from the CHB-

MIT dataset using three feature

sets: original 10 features (F10),

top 5 features (F5), and top 3

features (F3). Results are

presented for a F1-score and

b AUC score

Table 7 Overall performance

metrics obtained using patient-

specific feature selection for the

CHB-MIT dataset

Performance metrics Number of features

Without SMOTE With SMOTE

F10 F5 F3 F10 F5 F3

Avg. ACC 97.37 97.29 96.78 97.29 96.99 96.03

Avg. PRC 97.42 97.41 96.78 96.80 96.19 94.31

Avg. SEN 87.90 87.88 85.26 95.08 94.80 94.03

Avg. SPC 99.37 99.35 99.19 99.00 98.75 97.79

Avg. F1-SCR 92.14 92.13 90.28 95.85 95.38 94.01

Avg. AUC 0.9362 0.9359 0.9222 0.951 0.9479 0.9397

Avg.: Average, ACC: Accuracy, PRC: Precision, SEN: Sensitivity, SPC: Specificity, F1-SCR: F1-Score,
AUC: Area under the ROC curve, F10: Ten features, F5: Top five features, F3: Top three features
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selected common features derived from our proposed

approach and the results are presented in Table 10.

The performance of the SA-RF models trained using the

selected common features is evaluated using standard

performance metrics, both with and without the application

of SMOTE, highlighting the effect of class imbalance

handling on model performance across patients. Based on

the performance metrics presented in Table 9 for the CHB-

Fig. 9 Performance metrics obtained using patient-specific feature

selection with SMOTE with the original 10 features (F10), top 5

selected features (F5), and top 3 selected features (F3) for the Seina

dataset. The subfigures represent: a Accuracy, b Precision, c Sensi-

tivity, d Specificity, e F1-Score, and f Area Under the Curve (AUC)
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MIT dataset, it is evident that the application of the

selected common features: Shannon_ent, Std_dev, and

Sample_ent in patient-non-specific SA-RF models yields

strong results across patients. Without SMOTE, the aver-

age accuracy, precision, and F1-score obtained are 96.60%,

96.98%, and 99.25%, respectively, while the sensitivity

and specificity achieved are 86.91% and 91.43%. The

average AUC without SMOTE stands at 0.9308. With the

application of SMOTE, a notable improvement is observed

in sensitivity and overall class balance. The average sen-

sitivity increases from 86.91 to 94.52%, and the AUC

improves to 0.9452. Although the average accuracy and

precision remain almost the same (96.58% and 95.19%,

respectively), the application of SMOTE helps to reduce

the disparity between sensitivity and specificity, ultimately

enhancing the model’s ability to detect seizures reliably.

These results highlight the effectiveness of the selected

common features and the beneficial impact of SMOTE on

class imbalance handling in patient-non-specific seizure

detection.

Based on the results shown in Table 10 for the Seina

dataset, patient-non-specific models are evaluated using the

selected common features: Shannon_ent, Std_dev, Sam-

ple_ent, and Kurtosis under both SMOTE and non-SMOTE

settings.

Without applying SMOTE, the models achieved an

average accuracy of 94.95%, precision of 95.01%, and F1-

score of 94.24%. The sensitivity and specificity were

93.62% and 97.65%, respectively, with an AUC of 0.9362,

indicating strong classification performance across all

patients. Upon applying SMOTE, the performance metrics

remained largely consistent, showing marginal improve-

ments in sensitivity and AUC. The average sensitivity

increased to 94.04%, and AUC slightly improved to

0.9400, while accuracy, precision, and F1-score stayed

stable at 94.81%, 94.51%, and 94.28%, respectively.

These findings confirm that the performance of seizure

detection using the reduced patient-non-specific feature set

is robust, and that SMOTE further helps in addressing any

class imbalance, particularly enhancing sensitivity without

compromising overall accuracy.

The impact of SMOTE on the CHB-MIT and Seina

datasets highlights the influence of class imbalance and

seizure distribution on model performance. In the CHB-

MIT dataset, applying SMOTE led to a significant

improvement in sensitivity (from 86.91 to 94.52%), AUC

(from 0.9308 to 0.9452), and other metrics, indicating that

this dataset suffers from a more pronounced imbalance,

likely due to shorter or infrequent seizure segments in some

patients. This imbalance makes the model prone to bias

towards the majority class, which SMOTE effectively

counteracts by generating synthetic seizure samples. In

contrast, the Seina dataset showed only marginal perfor-

mance gains with SMOTE, suggesting it has more balanced

and consistent seizure distributions across patients.

Comparison with other state-of-the-art work

To evaluate the effectiveness of our proposed SHAP-

RELFR-based feature selection approach, we compared its

performance with existing state-of-the-art methods repor-

ted in the literature. Furthermore, an ideal parameter con-

figuration for the RF classifier has been identified using

SA, which is essential for managing noisy and high-di-

mensional EEG data. Robust performance metrics across

patients demonstrate the improvement in generalization

and mitigation of overfitting resulting from this optimiza-

tion stage. Table 11 presents a comparison of our findings

with the state-of-the-art work reported by different

researchers. Unlike prior studies that primarily relied on

traditional approaches, our method has used explainable

SHAP values for more robust and interpretable feature

selection. Compared to traditional methods, the use of

XAI-based SHAP not only enhances model performance

but also offers greater transparency, making it

Table 8 Overall performance

metrics obtained using patient-

specific feature selection for the

Seina dataset

Performance metrics Number of features

Without SMOTE With SMOTE

F10 F5 F3 F10 F5 F3

Avg. ACC 95.07 94.60 94.05 95.27 94.74 94.19

Avg. PRC 94.86 94.48 93.52 94.97 94.55 93.67

Avg. SEN 93.53 93.20 92.39 94.46 93.81 93.29

Avg. SPC 97.10 96.89 96.27 97.27 96.95 96.28

Avg. F1-SCR 94.39 93.82 93.21 94.56 94.10 93.41

Avg. AUC 0.9372 0.9372 0.9247 0.9441 0.9381 0.9329

Avg.: Average, ACC: Accuracy, PRC: Precision, SEN: Sensitivity, SPC: Specificity, F1-SCR: F1-Score,
AUC: Area under the ROC curve, F10: Ten features, F5: Top five features, F3: Top three features
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advantageous for clinical applications where understanding

the contribution of each feature is crucial.

Compared to prior studies, our proposed approach

demonstrates consistent and balanced performance across

Table 9 Performance metrics obtained using the common features

selected by the proposed SHAP-RELFR method for the patient-non-

specific case on the CHB-MIT dataset, evaluated with and without the

application of SMOTE

PID ACC PRC SEN SPC F1-SCR AUC

Without SMOTE

Patient 1 96.82 99.18 84.99 91.54 99.82 0.9241

Patient 2 100 100 100 100 100 1

Patient 3 99.46 97.73 98.77 98.25 99.59 0.9918

Patient 4 95.44 98.07 85.61 91.42 99.33 0.9247

Patient 5 97.29 95.72 88.47 91.96 99.16 0.9382

Patient 6 97.55 95.28 84.87 89.78 99.39 0.9213

Patient 7 98.88 98.22 93.94 96.03 99.71 0.9682

Patient 8 98.72 97.93 96.33 97.12 99.41 0.9786

Patient 9 99.76 99.10 99.32 99.21 99.84 0.9956

Patient 10 99.28 98 95.27 96.61 99.76 0.9752

Patient 11 88.44 90.20 71.81 79.96 96.31 0.8406

Patient 12 93.11 100 68.49 81.30 100 0.8424

Patient 13 97.9 99.68 87.39 93.13 99.94 0.9366

Patient 14 94.95 95.10 73.48 82.91 99.24 0.8636

Patient 15 87.28 94.70 73.15 82.54 97.14 0.8514

Patient 16 94.44 90.24 74.75 81.77 98.38 0.8657

Patient 17 94.75 94.08 83.58 88.52 98.32 0.9094

Patient 18 97.51 96.44 91.19 93.74 99.14 0.9516

Patient 19 100 100 100 100 100 1

Patient 20 100 100 100 100 100 1

Patient 21 93.8 95.49 71.91 82.04 99.17 0.8554

Patient 22 99.58 100 94.55 97.2 100 0.9727

Patient 23 97.17 97.55 82.06 89.14 99.66 0.9086

Patient 24 96.32 94.79 85.96 90.16 98.85 0.9241

Avg. 96.60 96.98 86.91 91.43 99.25 0.9308

With SMOTE

Patient 1 95.31 90.11 93.52 96.16 91.70 0.9352

Patient 2 100.00 100.00 100.00 100.00 100.00 1

Patient 3 99.51 99.38 99.38 99.67 99.38 0.9938

Patient 4 93.80 92.35 92.40 95.64 92.38 0.9240

Patient 5 95.36 94.04 94.19 96.73 94.12 0.9419

Patient 6 97.08 93.32 93.48 98.30 93.40 0.9348

Patient 7 97.82 96.52 96.25 98.74 96.38 0.9625

Patient 8 98.51 97.58 98.18 98.78 97.87 0.9818

Patient 9 99.86 99.64 99.83 99.88 99.73 0.9983

Patient 10 99.00 98.79 96.02 99.83 97.35 0.9602

Patient 11 92.21 90.66 91.80 92.94 91.19 0.9180

Patient 12 93.11 95.95 84.25 100.00 88.54 0.8425

Patient 13 97.28 98.37 92.92 100.00 95.36 0.9292

Patient 14 95.09 88.85 89.10 97.14 88.97 0.8910

Patient 15 87.95 88.38 84.14 95.63 85.74 0.8414

Patient 16 99.37 96.19 99.19 99.39 97.63 0.9919

Patient 17 97.07 96.68 96.62 97.88 96.65 0.9662

Table 9 (continued)

With SMOTE

Patient 18 97.91 96.60 97.00 98.54 96.80 0.9700

Patient 19 100 100 100 100 100 1

Patient 20 100 100 100 100 100 1

Patient 21 89.54 82.64 87.20 91.06 84.58 0.8720

Patient 22 99.53 99.47 98.73 99.89 99.10 0.9873

Patient 23 96.73 96.12 90.11 99.35 92.82 0.9011

Patient 24 95.88 92.90 94.29 96.91 93.58 0.9429

Avg. 96.58 95.19 94.52 98.02 94.72 0.9452

PID: Patient ID, Avg.: Average, ACC: Accuracy, PRC: Precision,
SEN: Sensitivity, SPC: Specificity, F1-SCR: F1-Score, AUC: AUC
score

Table 10 Performance metrics obtained using the common features

selected by the proposed SHAP-RELFR method for the patient-non-

specific case on the Seina dataset, evaluated with and without the

application of SMOTE

PID ACC PRC SEN SPC F1-SCR AUC

Without SMOTE

Patient 1 95.88 96.71 93.46 99.43 94.90 0.9346

Patient 2 91.53 92.12 90.99 96.48 91.35 0.9099

Patient 3 91.91 91.93 91.30 94.69 91.58 0.9130

Patient 4 96.82 97.04 95.00 99.11 95.96 0.9500

Patient 5 92.75 91.47 90.77 95.46 91.11 0.9077

Patient 6 97.06 96.99 95.94 98.71 96.44 0.9594

Patient 7 98.71 98.80 97.85 99.65 98.31 0.9785

Avg. 94.95 95.01 93.62 97.65 94.24 0.9362

With SMOTE

Patient 1 95.21 95.14 93.49 98.03 94.95 0.9329

Patient 2 91.61 92.30 91.83 96.92 91.42 0.9193

Patient 3 91.61 91.34 91.30 92.98 91.32 0.9130

Patient 4 96.65 96.52 95.07 98.63 95.96 0.9507

Patient 5 93.30 91.31 92.81 93.97 92.01 0.9281

Patient 6 96.60 96.13 95.93 97.90 95.98 0.9573

Patient 7 98.71 98.80 97.85 99.65 98.31 0.9785

Avg. 94.81 94.51 94.04 96.87 94.28 0.9400

PID: Patient ID, Avg.: Average, ACC: Accuracy, PRC: Precision,
SEN: Sensitivity, SPC: Specificity, F1-SCR: F1-Score, AUC: AUC
score
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multiple evaluation metrics. For instance, while the work

(Hassan et al. 2022) reported a very high accuracy of

99.38% and good specificity of 100%, they did not provide

sensitivity or AUC values, making it difficult to evaluate

their model’s seizure detection ability comprehensively. In

contrast, our approach achieved an accuracy of 96.58%, a

high sensitivity of 94.52%, and an AUC of 0.9452 on the

CHB-MIT dataset, indicating strong and balanced classi-

fication performance. The study (Behnam and Pourghas-

sem 2017) achieved 82.52% accuracy and 85.45%

sensitivity, but their specificity dropped to 22.20%, sug-

gesting a high rate of false alarms. Our model significantly

outperforms this with 98.02% specificity, reducing mis-

classifications. The work (Orosco et al. 2016) reported very

high accuracy of 99.90%, but again missed metrics such as

specificity and AUC, making it difficult to evaluate the

model’s generalizability. The study (Chen et al. 2017)

presented a balanced model with 92.30% accuracy and

91.71% sensitivity, yet our proposed method outperforms it

across all metrics, particularly with a higher AUC of

0.9452. The implementation (Samiee et al. 2017) had high

F1-scores, but their low sensitivity (71.60%�72.00%)

shows that their model missed many seizure events. The

methodology (Yang et al. 2020) reported an outstanding

sensitivity of 98.93%, accuracy of 98.26%, and specificity

of 97.64%; even our method maintains stable and high

performance across datasets.

Among recent studies, the work (Jana et al. 2023)

achieved 93.60% F1-score but an accuracy of 93.50%,

while (Poorani and Balasubramanie 2023) reported a high

accuracy of 94.83% and sensitivity of 93.99%, but still

slightly behind our CHB-MIT performance. The imple-

mentation (Sadam and Nalini 2024) showed competitive

performance with 94.48% accuracy and 94.90% sensitivity;

however, the accuracy is slightly lower compared to our

proposed model, which has achieved up to 96.99% on the

CHB-MIT dataset. However, our model consistently out-

performs in AUC and generalizes better across datasets.

This proposed work takes advantage of the ability to

choose from a flexible number of features, providing a

trade-off between the necessary computational power and

the classifier’s performance. Utilizing just 3 or 4 features

for the CHB-MIT or Seina datasets reduces the computa-

tional resources needed significantly, without compromis-

ing classifier performance. In contrast, Hassan et al. (2022)

has employed 9 features after the feature selection stage,

whereas (Yang et al. 2020) has utilized 30 features.

This proposed methodology shows significant gains in

patient-specific and patient-non-specific approaches of

feature selection compared to existing seizure detection

techniques. Because seizure occurrences are complicated

and unique, traditional methods, which frequently rely on

fixed feature sets and less advanced optimization tech-

niques, tend to perform poorly. The comparative analysis

highlights the proposed method’s contributions and

developments, emphasizing its potential as a useful tool for

seizure detection.

Overall, while several prior studies have achieved strong

performance in specific metrics, many of them lack con-

sistency across all key parameters such as sensitivity,

specificity, and AUC. Our proposed SHAP-based feature

selection and SA-RF method demonstrates a more

Table 11 Comparison with

other state-of-the-art works
Work Performance metrics

ACC PRC SEN SPC F1-SCR AUC

Hassan et al. (2022) 99.38 - - 100 99.32 -

Behnam and Pourghassem (2017) 82.52 95.80 85.45 22.20 90.32 -

Orosco et al. (2016) 99.90 - 87.5 - - -

Chen et al. (2017) 92.30 92.80 91.71 92.89 - -

Samiee et al. (2017) - - 71.60 99.20 98.80 0.854

- - 72.00 97.20 97.50 0.846

Yang et al. (2020) 98.28 - 98.93 97.64 - -

86.27 - 80.32 92.22 - -

Jana et al. (2023) 93.50 - 93.19 93.90 93.66 0.9350

Poorani and Balasubramanie (2023) 94.83 99.43 90.18 99.43 94.50 -

Sadam and Nalini (2024) 94.48 94.10 94.90 - - -

Proposed work: CHB-MIT 96.99 96.19 94.80 98.75 95.38 0.9479

96.58 95.19 94.52 98.02 94.72 0.9452

Proposed work: Seina 94.74 94.55 93.81 96.95 94.10 0.9381

94.81 94.51 94.04 96.87 94.28 0.9400

ACC: Accuracy, PRC: Precision, SEN: Sensitivity, SPC: Specificity, F1-SCR: F1-score
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balanced and robust performance across both the CHB-

MIT and Seina datasets, achieving high accuracy, sensi-

tivity, and specificity with excellent AUC values. By

integrating explainable AI for reliable feature selection, our

approach not only enhances seizure detection but also

ensures better generalization and interpretability, making it

a more reliable and effective solution compared to tradi-

tional and recent methods.

Discussion

The findings of this proposed work show that the

Explainable AI (XAI) framework, incorporated with

SMOTE and the simulated annealing optimized RF clas-

sifier, greatly enhances seizure detection performance. The

SHAP value-based patient-specific feature selection has

shown promising results by effectively identifying the most

influential features for each individual, leading to improved

model performance and enhanced interpretability in seizure

detection. The contribution of each feature to model pre-

diction is more effectively examined using the SHAP

summary plot and SHAP bar graph. According to this

proposed work, each patient has a different feature ranking

as shown in Tables 3 and 4, revealing that different fea-

tures have diverse roles in seizure detection. This diversity

in features highlights the necessity for customized models,

which emphasize the variation in seizure manifestations

among patients. For nearly all patients in the CHB-MIT

dataset and Seina dataset, Shannon_ent is found to have the

greatest impact on model prediction. Thus, this proposed

approach will assist in choosing the top k features for the

seizure detection model. The essential predictive capability

could be maintained even after the model is reduced to 5

features, as demonstrated in Tables 7 and 8, despite the

model becoming less complex and requiring fewer com-

puting resources. Because of this balance, the model with 5

features obtained using a patient-specific feature selection

method is a desirable choice for practical applications

where computational performance is an important

consideration.

This research work has demonstrated a systematic and

reliable procedure to identify the best common features that

can be utilized across models of each patient. The proposed

SHAP-RELFR patient-non-specific feature selection

method has obtained Shannon_ent, Std_dev, and Sam-

ple_ent features as the most effective feature set that can be

used to train models of all patients of the CHB-MIT

dataset. Similarly, Shannon_ent, Std_dev, Sample_ent, and

Kurtosis are obtained as a common feature set that can be

used for training the model of all patients in the Seina

dataset. The proposed novel SHAP-RELFR method for

patient-non-specific feature selection has been evaluated by

estimating the performance metrics of each patient. This

suggests that, irrespective of patient-specific characteris-

tics, three or four features have a generalizable predictive

power for seizure detection of patients from the CHB-MIT

or Seina datasets. It can function as a baseline model that

can be refined further on patient-specific data, offering a

versatile framework for seizure detection in a diverse

clinical setting.

The RF model, validated using 5-fold cross-validation

with SMOTE, demonstrates robustness across multiple data

splits, therebyminimizing the risk of overfitting and ensuring

better generalization to unseen data. Using the CHB-MIT

dataset, the patient-specific feature selection method yields

an impressive key performance metric as illustrated in

Table 7. An average value of accuracy 96.99%, precision of

96.19%, sensitivity of 94.80%, specificity of 98.75%, F1-

score of 95.38%, and AUC of 0.9479. As shown in Table 9,

the patient-non-specific approach also demonstrates strong

performance, yielding results that are closely comparable to

those of the patient-specific feature selectionmethod. For the

Seina dataset, as depicted in Table 8, an average value of

accuracy 94.74%, precision of 94.55%, sensitivity of

93.81%, specificity of 96.95%, F1-score of 94.10%, and

AUC of 0.9381 are obtained for the patient-specific feature

selection.Whereas, the average value of accuracy, precision,

sensitivity, specificity, F1-score, and AUC obtained by

patient-non-specific features are 94.81%, 94.51%, 94.04%,

96.87%, 94.28%, and 0.9400, respectively.

By optimizing model performance and lowering com-

putational complexity, the use of SHAP values for feature

reduction in seizure detection not only improves clinical

results but also increases the interpretability and reliability

of machine learning models through Explainable AI (XAI)

(Frasca et al. 2024). Healthcare practitioners can gain

important insights into the mechanisms behind epilepsy

and open the door for customized, data-driven approaches

to patient care. SA helps avoid local minima, ensuring

optimal feature selection by efficiently searching through

large feature spaces. The SA optimization method skillfully

strikes a balance between exploring and exploiting the

hyperparameter space and optimizing the model for better

performance.

This proposed work demonstrates strong performance

and interpretability; however, real-time implementation

aspects such as latency, computational load, and hardware

feasibility are not explored. Since the methods employed in

this work, such as DWT-based signal decomposition, fea-

ture extraction, SHAP-based interpretability, and RF clas-

sification, are relatively lightweight, they have the potential

for real-time use. Future investigations may involve ana-

lyzing the execution time, evaluating processing delays,

and testing on resource-constrained platforms to confirm

the system’s suitability for clinical or wearable

deployment.
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Conclusion

The main contribution of the proposed methodology is to

present a novel framework that provides an enhanced

method for seizure detection using multichannel EEG sig-

nals by integrating DWT, statistical and entropy-based fea-

tures, SHAP-based feature selection, SMOTE, and SA-RF

classifier. SHAP-based patient-specific and patient-non-

specific feature selectionmethods offer unique advantages in

developing machine learning models for seizure detection.

By tailoring feature selection for each patient, the framework

improves the model’s capacity to customize treatments and

predictions. It simultaneously integrates feature selection

that is not specific to a patient to find features that are relevant

to all patients using a novel SHAP-RELFR method. SA

balances exploring new feature subsets with focusing on

promising ones, leading to better solutions. Furthermore, the

application of SMOTE addressed the issue of class imbal-

ance, particularly improving sensitivity in the minority sei-

zure class. Both patient-specific and patient-non-specific

approaches benefited from SMOTE, showing improved

sensitivity without compromising specificity or overall

accuracy. The proposed methodology is rigorously evalu-

ated using two benchmark datasets, CHB-MIT and Seina.

The performance metrics obtained using both approaches

remain consistently high even after reducing the number of

features, indicating that the model performs robustly and

effectively. This consistency in performance metrics indi-

cates that the feature selection process effectively identifies

the most relevant features.

In addition to improving transparency, SHAP values

offer a strong framework for analyzing feature relevance,

enabling us to keep the features that have the biggest

impact on the model’s predictive capability. This proposed

low-cost and efficient seizure detection system using SHAP

value will aid in refining the feature engineering, improv-

ing the model interpretability, and assisting clinicians in

optimizing clinical decision-making. Future developments

may include automated parameter tuning, hybrid opti-

mization, and real-time implementation on resource-con-

strained platforms.
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