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Abstract 

Background  The detection of epileptic seizures is a crucial aspect of epilepsy care, requiring precision and reli-
ability for effective diagnosis and treatment. Seizure detection plays a critical role in healthcare informatics, aiding 
in the timely diagnosis and management of epilepsy. The use of computational intelligence and optimization tech-
niques has shown significant promise in improving the performance of automated seizure detection systems.

Methods  This research work proposes a novel hybrid approach that combines Ant Colony Optimization (ACO) for feature 
selection with Gray Wolf Optimization (GWO) to optimize the hyperparameters of a Random Forest (RF) classifier. In this 
patient-specific seizure detection, ACO effectively reduces the feature set, improving computational efficiency, while GWO 
ensures optimal RF performance. The method is evaluated on the Children’s Hospital Boston–Massachusetts Institute of Tech-
nology (CHB–MIT) and Seina datasets, which include multichannel EEG data from epileptic patients. Performance metrics 
such as accuracy, sensitivity, and specificity are employed to evaluate the effectiveness of the seizure detection system.

Results  The proposed ACO-GWO-RF pipeline demonstrated excellent performance on the CHB-MIT dataset, 
with a mean accuracy of 96.70%, mean sensitivity of 92.66%, and mean specificity of 99.24%, outperforming existing 
approaches. The mean values of accuracy, sensitivity, and specificity obtained using the Seina dataset are 93.01%, 
89.82%, and 96.26%, respectively. These improvements highlight the robustness of the hybrid metaheuristic method 
in handling complex EEG data.

Conclusions  The hybrid metaheuristic approach effectively optimizes the processing and classification of EEG data 
for seizure detection. Its strong performance across datasets suggests potential for integration into interactive health 
applications. Furthermore, its patient-specific adaptability makes it a promising tool for personalized epilepsy diagno-
sis, treatment, and long-term management.

Keywords  Epileptic seizure, EEG signal, Ant colony optimization, Grey wolf optimization, Random forest, Healthcare 
decision support system

Background
Healthcare informatics has emerged as a transforma-
tive field, integrating advanced computational methods 
with medical data to enhance diagnostic accuracy and 
patient care. The advent of artificial intelligence (AI) and 
machine learning (ML) techniques has further acceler-
ated progress in this domain [1–3], enabling the analysis 
of complex physiological signals such as electroenceph-
alograms (EEG) [4, 5]. In particular, automated seizure 
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detection using EEG signal has become a critical area of 
research, addressing the challenges of timely and accu-
rate epilepsy diagnosis. Seizure detection models play 
a pivotal role in tracking the frequency and duration 
of seizures. These are crucial parameters in evaluating 
the effectiveness of anti-seizure medications (ASMs) or 
other therapeutic interventions [6]. Clinicians can make 
informed decisions about the patient’s treatment plan 
using seizure detection models.

Approximately 50 million people globally, spanning all 
age groups [7], experience epilepsy, one of the most prev-
alent neurological conditions. A defining characteristic 
of epilepsy is recurrent seizure activity [8, 9]. A seizure, 
which results from an abrupt and excessive discharge of 
electrical activity in a group of brain cells, is an aberrant 
behavior of the brain that results in loss of awareness, loss 
of consciousness, and unusual behavior [7, 8]. Most of the 
time, there is no known reason for epilepsy; however, it 
can also result from a head injury, stroke, infection of the 
brain, tumor, or genetic abnormality [7].

Electroencephalography plays a crucial role in seizure 
detection [4], capturing electrical activity across various 
brain regions [9] to identify abnormal patterns associated 
with seizures. However, analyzing complex multichan-
nel EEG signals for seizure detection presents challenges, 
particularly in achieving high accuracy, real-time perfor-
mance, and patient-specific adaptability. In recent years, 
automated seizure detection has emerged as an essential 
tool, offering the potential to assist clinicians by stream-
lining diagnostics and improving patient outcomes 
through rapid and reliable detection of seizure events [10]. 
The diagnosis, treatment, and investigation of epilepsy 
depend heavily on machine learning algorithms and med-
ical signal processing techniques [11]. The process could 
be automated with the best techniques, simplifying and 
easing the seizure detection task. The pattern of epilep-
tic seizures is extremely erratic and includes high voltage 
spikes, spike waves, and complicated spike-wave patterns 
[12, 13]. Figure 1 shows the plot of the seizure signal seg-
ment, which demonstrates distinct spike-and-wave activ-
ity, clearly differentiating it from the normal segment.

In EEG-based seizure detection, transforming raw sig-
nal data into informative features is critical for enhancing 
the learning capacity of machine learning and deep learn-
ing models. Given the highly dynamic, non-linear, and 
often chaotic nature of EEG signals [4], researchers have 
employed a wide spectrum of feature extraction techniques 
to capture both spatial and temporal dynamics associ-
ated with seizure patterns. Time-domain features [14, 15] 
such as zero-crossing rate [9], signal energy [16], higher-
order statistical moments [9, 17] and Hjorth parameters 
[18] have been frequently used to reflect the signal’s struc-
tural properties. In the frequency domain [14, 15], power 
spectral density, band-specific energy ratios, and spectral 
entropy [19] are commonly computed to quantify rhyth-
mic brain activity. Time-frequency methods like short-time 
Fourier transform (STFT) [20], wavelet packet decomposi-
tion (WPD), stationary wavelet transform (SWT) [16], and 
discrete wavelet transforms (DWT) [9, 21] are particularly 
effective in handling non-stationarity by offering localized 
information across both time and frequency dimensions.

Furthermore, non-linear and complexity-based fea-
tures such as the fractal dimension [18, 22], permutation 
entropy [18, 22], sample entropy [18, 22], fuzzy entropy 
[22], Lempel-Ziv complexity, and Lyapunov exponents 
[22] have shown strong discriminative capabilities for dis-
tinguishing ictal and interictal segments. In addition to 
these, more recent studies have explored advanced signal 
decomposition techniques like dynamic mode decompo-
sition (DMD) [23], which separates complex multichannel 
EEG signals into spatiotemporal coherent structures and 
is effective in isolating dominant modes of brain activity 
during seizures. Similarly, variational mode decomposi-
tion (VMD) [24] has been used to extract low-rank rep-
resentations and intrinsic patterns from EEG, capturing 
transient and oscillatory behaviour associated with ictal 
activity. Some approaches also leverage the Hilbert-Huang 
Transform (HHT) [25] to enhance resolution in time-fre-
quency space. The inclusion of such sophisticated feature 
extraction methods broadens the representational power 
of seizure detection models and facilitates the develop-
ment of systems capable of generalizing across diverse 

Fig. 1  Plot of EEG signal from one channel: The yellow shaded portion shows the seizure signal segment indicating high voltage spikes-and-wave 
activity



Page 3 of 23Dokare and Gupta ﻿Acta Epileptologica            (2025) 7:42 	

patient conditions. This diverse set of features, when 
appropriately selected and combined, can significantly 
enhance the robustness of seizure classification systems.

While the extraction of diverse features enhances the 
richness of EEG representation, not all extracted features 
contribute equally to seizure detection. Redundant or 
irrelevant features can lead to overfitting, increased com-
putational burden, and reduced generalization. There-
fore, effective feature selection plays a pivotal role in 
identifying the most discriminative and informative sub-
set of features. Traditional methods such as recursive fea-
ture elimination (RFE) [26], mutual information (MI) [9, 
27], Lambda of Wilks (WL) [16], fuzzy C-means cluster-
ing [23], and Kolmogorov–Smirnov (K–S) test [28] have 
been widely used for feature selection in several studies. 
Similarly, an embedded method such as the least absolute 
shrinkage and selection operator (LASSO) [29] was also 
used for feature selection in seizure detection. Recently, 
metaheuristic algorithms such as genetic algorithm (GA) 
[30], and binary particle swarm optimization (BPSO) [31] 
algorithms have gained popularity for their ability to per-
form global search in high-dimensional feature spaces.

In the past years, numerous researchers have put forth 
various approaches and models for the investigation and 
diagnosis of epilepsy detection using multichannel scalp 
EEG signals [18, 26, 28, 32–34]. Figure  2 presents an 
overview of existing seizure detection methods based on 
machine learning and deep learning algorithms.

The patient-specific approach presented [34] has employed 
a DWT to transform the EEG signal into a 2D space, form-
ing a texture image. The Gray Level Co-occurrence Matrix 
(GLCM) was used to extract multivariate features from the 
generated gray-level texture image. The classification of sei-
zure and seizure-free epochs was obtained using support 
vector machine (SVM), logistic regression (LR), k-nearest 
neighbor (kNN), Naive Bayes (NB), and random forest (RF) 
classifiers. Another study [26] has employed parse rational 
decomposition and Local Gabor Binary Pattern (LGBP) 
to extract the features. These features were computed for 8 
rational components of 23 channels and applied to LR, RF, 
and linear SVM for classification.

A study employed [28] has demonstrated the use of fuzzy 
entropy for feature extraction and selected the electrodes 
having significant variation in entropy during a seizure and 
non-seizure state. The eigenvectors of these entropy values 
were fed to the SVM. The investigation [32] has decom-
posed the segmented EEG signal into four frequency bands 
using DWT. Three extracted features from each band were 
classified into seizure and non-seizure segments. This 
approach was validated using five classifiers named linear 
discriminant analysis (LDA), kNN, SVM, NB, and clas-
sification tree (CT). An approach [35] applied DMD to 
scalp EEG data for seizure detection by measuring power 

across EEG frequency bands and using signal curve lengths 
as features. These features were classified using a random 
under-sampling boost decision-tree classifier, achieving a 
sensitivity of 87%. Nonlinear dynamics and the Nullclines 
concept were proposed in one of the works [36] for fea-
ture extraction, and further classified these features using 
LDA. This work has obtained 91.15% of average sensitivity 
and 95.16% of average specificity. A hybrid local binary pat-
tern (LBP) and wavelet-based method has been proposed 
[33] for classifying EEG signals. In this patient-specific 
approach, a new signal was formed from filtered EEG sig-
nals using a local binary pattern. After decomposing this 
new signal using DWT, univariate and bivariate features 
were extracted and fed to LDA for classification purposes. 
Min-max histogram approach for feature extraction [18] 
was proposed along with time domain features and nonlin-
ear features. Further, after feature selection, these features 
were applied to SVM and XG Boost classifiers.

The work [37] has utilized an attention mechanism com-
bined with a bidirectional long short-term memory (BiL-
STM) network for seizure detection. A feature extraction 
method combining WPD and common spatial patterns 
(CSP) was developed, and a convolutional neural network 
(CNN) was employed for classification purposes [38]. 
Another study [39] has employed a CNN with data aug-
mentation for seizure detection. The approach [40] based 
on hybrid sampling and a cost-sensitive SVM has achieved 
a mean sensitivity of 86.34%. Hybrid frameworks that com-
bine signal decomposition methods with intelligent fea-
ture selection mechanisms have demonstrated significant 
improvements. For instance, using empirical mode decom-
position (EMD) to derive intrinsic mode functions, followed 
by mutual information-based best individual feature selec-
tion, has enabled the construction of compact yet informa-
tive feature sets, effectively used in multilayer perceptron 
networks for classification [27]. In another work [2], the pro-
posed method utilized unsupervised learning for preliminary 
seizure screening and supervised learning with EasyEnsem-
ble for improved detection and class imbalance handling.

A fine-tuned capsule neural network (CapsNet) 
approach [3] has been employed in one of the recent stud-
ies. In another study [41], a convolutional neural network 
model, AlexNet, was utilized to identify epileptic states 
by analyzing EEG signals from patients and achieved an 
accuracy of 98%. A deep learning model integrating CNN 
and LSTM architecture [42] was employed in a research 
work. The proposed hybrid model [43] combines deep 
learning-based feature extraction with a nonlinear SVM 
classifier for effective implementation, obtaining the 
94.48% accuracy. In the latest work [44], EEG time-fre-
quency features were extracted using a short-time Fourier 
transform and processed by a multidimensional trans-
former. Long short-term memory network and gated 
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recurrent unit (GRU) further analyzed these features, 
combined via a gating mechanism for seizure prediction. 
The work [45] presented a comprehensive seizure detec-
tion framework integrating statistical and nonlinear fea-
tures extracted via DWT after artifact removal using a 
Butterworth filter. Feature selection was performed using 
P-value-based correlation coefficients and distance cor-
relation methods. A bagged tree-based classifier was 
then used for classification, and the system also incorpo-
rated Explainable AI techniques to enhance transparency. 
Recent advancements in seizure detection have empha-
sized the refinement of feature extraction and selec-
tion strategies to enhance classification accuracy while 

minimizing computational overhead. Time-frequency 
transformation methods like continuous wavelet trans-
form (CWT) are commonly employed to convert EEG 
signals into scalogram images, allowing deep networks 
such as CNN to function as automatic feature extractors. 
These learned features are then typically fed into classifi-
ers like SVM for final binary classification [43].

Many existing methods either rely on exhaustive feature 
sets without optimization or lack an effective feature selec-
tion and parameter-tuning strategy, leading to increased 
computational complexity and reduced classification per-
formance. In this context, this proposed work introduces 
a novel approach leveraging metaheuristic algorithms 

Fig. 2  Summarization of existing works
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for both feature selection and parameter optimization. 
Metaheuristic algorithms, known for their ability to explore 
and exploit complex solution spaces effectively, offer sig-
nificant advantages in addressing the limitations of conven-
tional optimization techniques. Specifically, this proposed 
work has utilized ACO for feature selection, ensuring the 
extraction of the most relevant features while minimizing 
redundancy. Additionally, grey wolf optimization (GWO) 
is employed for model parameter optimization, ensuring 
enhanced detection performance and robustness. By inte-
grating these two metaheuristic techniques, this proposed 
approach bridges the gap between traditional and advanced 
methods, providing a more efficient, accurate, and compu-
tationally feasible solution for seizure detection.

In recent years, machine learning algorithms have 
played an increasingly prominent role in develop-
ing seizure detection systems. Various classifiers, such 
as SVM [10, 34, 40, 43, 46] and RF [19, 26] have been 
widely applied in this domain; their performance heav-
ily depends on the quality of the input features and the 
optimization of model parameters. Consequently, select-
ing the most relevant features from the vast multichannel 
EEG data and tuning the classifier’s hyperparameters is 
paramount to achieving high detection accuracy.

To address these challenges, the discriminating charac-
teristics of seizure/ictal and non-seizure/inter-ictal sig-
nals are estimated by using statistical and entropy-based 
features [46]. Further, this research work proposes a 
novel hybrid metaheuristic approach combining ant col-
ony optimization (ACO) for feature selection and GWO 
for hyperparameter tuning of a classifier. The natural way 
that ants explore the best paths through a graph serves 
as the inspiration for ACO, which has been successfully 
used for feature selection to lower dimensionality while 
maintaining important information. Grey wolf hunting 
behavior served as the inspiration for the population-
based optimization technique known as GWO, which is 
employed to fine-tune the parameters of RF to improve 
their performance in detecting seizures.

This proposed research work aims to bridge the gap 
between traditional seizure detection methods and the need 
for optimized, patient-specific solutions that can be applied 
in real-world healthcare settings. The integration of ACO 
and GWO not only enhances classification performance 
but also offers potential applications in developing tailored 
healthcare solutions for epilepsy management, where reli-
able and responsive detection systems are crucial.

The main contribution of this proposed work is as 
follows: 

1.	 Feature extraction and dimensionality reduction: 
Extraction of statistical and entropy-based features 
from EEG data to capture critical patterns. ACO is 

utilized to select the most discriminative features, 
reducing dimensionality and improving computa-
tional efficiency, essential for real-time applications.

2.	 Optimized classifier performance through GWO: GWO 
is applied to fine-tune the parameters of the RF classifier, 
achieving high accuracy and ensuring efficient and reli-
able seizure detection tailored to individual patients.

3.	 Good performance on benchmark datasets: The 
proposed ACO-GWO framework is evaluated on 
the widely used CHB-MIT and Seina EEG datasets, 
achieving excellent accuracy, specificity, and sensitivity.

The organization of the next part of this paper goes as 
follows: the “Methods” section covers a description of the 
datasets used, pre-processing method, feature selection, 
and the classifier employed. The results and the comparison 
with existing works are included in the  “Results”  section. 
The  interpretation of results  is presented in the  “Discus-
sion”  section, whereas the  “Conclusions”  section summa-
rizes the key findings and outcomes of the research.

Methods
The tools and procedures employed in this proposed 
work for seizure detection are covered in this section. 
The overview of the workflow used in this proposed work 
is presented in Fig. 3. The widely known CHB-MIT and 
Seina multichannel EEG datasets are utilized to assess 
the proposed hybrid ACO-GWO-RF method.

Dataset description
This proposed work has been evaluated using two bench-
mark multichannel  EEG datasets: CHB-MIT and Siena, 
to ensure robustness and generalizability of the devel-
oped seizure detection framework.

CHB‑MIT dataset
The scalp EEG dataset [47, 48], which is accessible online 
at physionet.org [49, 50], is used in this work for experi-
mentation. The data were gathered from pediatric patients 
with uncontrollable seizures at Children’s Hospital Boston, 
using scalp EEG recordings. This dataset was generated 
and given to Physionet by the Massachusetts Institute of 
Technology (MIT) and Children’s Hospital Boston (CHB). 
This multichannel scalp EEG dataset was recorded by the 
international 10–20 system of EEG electrode locations and 
nomenclature. The signals were captured with a sampling 
frequency of 256 Hz with a resolution of 16 bits. It contains 
a total of 686 recordings, out of which 141 recordings con-
tain 198 seizures in total. The dataset solely includes seizure 
patients as shown in Table 1. The collection contains some 
files that show seizure activity, while others do not. The text 
file specifies the start time and end time of a seizure event. 
These files include recordings from several channels.
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In this proposed work, 196 seizures are considered 
for experimentation. The duration of seizure data and 
non-seizure data considered in this work is depicted in 
Fig. 4a. The total seizure duration considered is 3 hours, 
15 minutes, 57 seconds. The non-seizure data samples 
are randomly selected from different files recorded at 
different times for a specific patient.

Seina dataset
This dataset contains EEG recordings from epilep-
tic patients, collected at the Unit of Neurology and 

Neurophysiology, University of Siena. It is publicly 
available online at physionet.org [51, 52]. The partici-
pants were 9 males and 5 females (aged 20–71), moni-
tored through Video-EEG recordings at a sampling rate 
of 512 Hz. EEG electrodes were positioned according to 
the international 10–20 system, and data were acquired 
using EB Neuro and Natus Quantum LTM amplifiers 
with reusable silver or gold cup electrodes.

In the Siena time series dataset, seizure start and end 
times are provided in a separate text file, formatted in 
hours, minutes, and seconds. Detailed information 
about the patients included in this work is presented in 

Fig. 3  Overview of the proposed framework for seizure detection using the integration of ACO-GWO, illustrating the key stages 
including preprocessing, feature extraction, feature selection using ACO, and GWO-based hyperparameter optimized RF classifier

Table 1  CHB-MIT EEG dataset used in this proposed work

PT Patient, NS Number of seizures, SD Seizure duration, Sec. Seconds, Age in years

PT Gender-age NS SD PID Gender-age NS SD
(Sec.) (Sec.)

PT 1 F - 11 7 442 PT 13 F - 3 12 828

PT 2 M - 11 3 172 PT 14 F - 9 8 169

PT 3 F - 14 7 402 PT 15 M - 16 20 1992

PT 4 M - 22 4 378 PT 16 F - 7 10 69

PT 5 F - 7 5 558 PT 17 F - 12 3 293

PT 6 F - 1.5 10 153 PT 18 F - 18 6 317

PT 7 F - 14.5 3 325 PT 19 F - 19 3 236

PT 8 M - 3.5 5 787 PT 20 F - 6 8 294

PT 9 F - 10 4 276 PT 21 F - 13 4 199

PT 10 M - 3 7 447 PT 22 F - 9 3 204

PT 11 F - 12 3 806 PT 23 F - 6 7 424

PT 12 F - 2 40 1475 PT 24 - - 16 511
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Table 2. The seizure and non-seizure durations used for 
training the model are shown in Fig. 4b.

Data pre‑processing
The EEG signal contains noise as a result of incorrect 
recording electrode placement, eye blinks, muscle move-
ments, or 50/60Hz power line interference. As part of the 
pre-processing step in this work, the EEG signal from every 
channel is passed through a Butterworth low-pass filter 
of order 4, having a cut-off frequency of 64 Hz  followed 
by a notch filter. A Butterworth filter is a linear filter that 
maximally provides a flat response in the passband. The 
seizure and non-seizure signal segments of channel FP1–
F7 for patient 4 of the CHB-MIT dataset before and after 
the application of the filter are shown in Fig. 5. Since the 
EEG signal is non-stationary, it is divided into a fixed-size 
segment to make the signal stationary [4]. For clinical pur-
poses, an epileptic episode often lasts less than 10 seconds.

Many EEG seizure detection techniques typically use 
segment lengths from 1 to 30 seconds. The segment 
length employed in various works is 1 second [33], 5 sec-
onds [9], 6 seconds window with non-overlaps [18], 5 
seconds window [53], and 4 seconds [32]. This proposed 

work used a fixed segment length of 4 seconds, contain-
ing 1024 sample points for each segment.

Feature extraction
In order to extract useful information from the raw signal, 
the main objective of feature extraction is to reduce the 
enormous dataset into a smaller feature vector. The statisti-
cal and entropy-based features [46] of the segmented EEG 
signal are calculated. Statistical features can capture impor-
tant information like the shape of the data, distribution, 
and dispersion, hence can help a model to make accurate 
detection. The statistical features, like a minimum signal 
value, maximum signal value, mean, standard deviation, 
skewness, and kurtosis of the EEG signal, are determined. 
Entropy is a widely used tool for analysis of the complex-
ity metrics of chaotic time series EEG signals to understand 
the dynamics of the system based on probability distribu-
tion [54]. Hence, the entropy-based features like spectral 
entropy, sample entropy [1, 55], permutation entropy, and 
Shannon entropy [1, 55] of the EEG signal segments are 
determined in this proposed work along with statistical fea-
tures. Thus, the final feature vector contains six statistical 
and four entropy-based features, forming a set of a total of 

Table 2  Seina EEG dataset used in this proposed work

PT Patient, NS Number of seizures, SD Seizure duration, Sec. Seconds, Age in years

PT Gender-age NS SD PID Gender-age NS SD
(Sec.) (Sec.)

PT 1 M - 55 5 325 PT 8 F - 58 1 55

PT 2 M - 54 2 111 PT 9 M - 71 4 290

PT 3 F - 51 3 104 PT 10 F - 34 3 264

PT 4 M - 36 5 282 PT 11 M - 49 4 163

PT 5 F - 20 1 62 PT 12 F - 41 2 230

PT 6 F - 27 3 203 PT 13 M - 42 2 153

PT 7 M - 25 10 338

Fig. 4  Seizure and non-seizure durations utilized for training the model for each patient in the a CHB-MIT dataset and b Seina dataset
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ten features. Combining statistical and entropy-based fea-
tures allows for the identification of complex characteris-
tics like spike and wave patterns and the random nature of 
seizure activity present in the EEG signals. Ten features are 
extracted from each segmented EEG signal and are indexed 
as – 0: Minimum, 1: Maximum, 2: Mean, 3: Standard devia-
tion, 4: Kurtosis, 5: Skewness, 6: Spectral entropy, 7: Sample 
entropy, 8: Permutation entropy, 9: Shannon entropy. Fur-
ther, these ten features are fed to the ACO-based feature 
selection stage.

Feature selection using ACO
The contribution of each of the ten features varies among 
patients, meaning not all features are equally important 
for every individual. Hence, feature selection is essential 
to identify the most relevant features for each patient, 
optimizing model accuracy by focusing on features that 
contribute most to the classification.

Ant colony optimization [56, 57] is a population-based 
metaheuristic algorithm that draws inspiration from ant 
foraging behavior. In nature, ants find the shortest path 
between a food source and their nest by depositing phero-
mone trails on the ground. Other ants tend to follow these 

pheromone trails, with shorter paths receiving more pher-
omone due to frequent traversal. Over time, this collective 
behavior leads to the discovery of the optimal or near-
optimal path. ACO mimics this behavior to solve opti-
mization problems by finding the best solutions through 
iterative exploration of a solution space. In ACO, artificial 
pheromone trails represent the desirability of certain paths 
or solutions. The more pheromones deposited on a path, 
the more likely that path will be chosen by other ants in 
future iterations. Ants are agents that traverse a graph rep-
resenting possible solutions to an optimization problem. 
Each ant constructs a potential solution by probabilisti-
cally choosing components (nodes) based on the amount 
of pheromone and a heuristic value. ACO finds a balance 
between exploitation (solidifying already promising solu-
tions) and exploration (exploring new regions of the solu-
tion space). This is managed by pheromone evaporation, 
which prevents early convergence to suboptimal solutions. 
ACO seeks to maximize an objective function that evalu-
ates the quality of the offered solutions.

This proposed work has employed the ACO for fea-
ture selection. In feature selection, the objective function 
used is the accuracy of the RF model. Pheromone levels 

Fig. 5  Original and filtered EEG signals from channel FP1–F7 for patient 4 of the CHB-MIT dataset showing a seizure and b non-seizure segments
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are adjusted following each repetition according to how 
well the ants produced their solutions. Better solutions 
deposit more pheromones, reinforcing their desirabil-
ity for future iterations. The ACO algorithm for feature 
selection is described as follows: 

1.	 Initialization: Initialize the pheromone trails for all 
potential paths (features) in the search space. Define 
a number of ants, the evaporation rate, the number 
of iterations, and the objective function, which is the 
accuracy of a classifier.

2.	 Ant solution construction: Each ant starts at a ran-
dom position (feature). Ants iteratively build solu-
tions by probabilistically selecting the next feature 
based on the amount of pheromone and a heuristic 
value. The transition probability for an ant to select 
feature ′i′ is influenced by pheromone level ( τ ) and 
heuristic value ( η ). The probability of selecting fea-
ture ′i′ is given by 

 where, Pi is the probability of selecting feature ′i′ , 
τi is the pheromone level associated with feature ′i′ , 
ηi is the heuristic information of feature ′i′ , α is the 
parameter controlling the influence of pheromone 
levels, β is the parameter controlling the influence 
of heuristic information, j∈J τ

α
j · η

β
j  is the normali-

zation factor ensuring that the sum of probabilities 
for all features equals 1. The pheromone level is the 
amount of pheromone deposited on the feature. The 
heuristic value is the attractiveness of selecting the 
feature, based on its importance to seizure detection.

3.	 Objective function evaluation: Once each ant has 
constructed a solution (a subset of features), the solu-
tion is evaluated using the objective function, which 
is the accuracy of the RF classifier.

4.	 Pheromone update: After evaluating all solutions, the 
pheromone levels are updated. Pheromone is depos-
ited on the features selected by the best-performing 
ants. The amount of pheromone deposited is propor-
tional to the quality of the solution. At the same time, 
pheromone evaporation is applied to reduce the pher-
omone levels of less desirable solutions, allowing for 
the exploration of new solutions. This helps prevent 
the algorithm from converging too quickly to a subop-
timal solution. The pheromone update rule is given as 

(1)Pi =
ταi · η

β
i∑

j∈J τ
α
j · η

β
j

(2)τi = (1− ρ) · τi +

m∑

k=1

�τ ki

  Where, τi is the pheromone level on feature ′i′ 
after updating, ρ is the evaporation rate, controlling 
the rate at which pheromone evaporates, �τ ki  is the 
amount of pheromone deposited by ant k on feature 
′i′ , m is the number of ants.

5.	 Pheromone update and convergence: After multiple 
iterations, the algorithm refines the subset of features 
by updating pheromone levels based on the perfor-
mance of different feature sets. This ensures that only 
the most relevant features are selected.

In this experimental setup, 5 ants explored possible 
feature subsets over 10 iterations to identify the opti-
mal combination. Each ant’s feature subset selection was 
influenced by pheromone levels (importance factor α = 
1) and heuristic information (importance factor β = 2), 
which guided them toward promising features. At each 
iteration, feature subsets were evaluated using RF clas-
sifier, and the performance scores influenced phero-
mone updates, with a 50% evaporation rate ( ρ = 0.5) to 
allow new exploration. This iterative process encouraged 
convergence toward the best subset of features, thereby 
improving the accuracy of the classifier for seizure detec-
tion. Once the most relevant subset of features is iden-
tified, they are utilized as input to the GWO-optimized 
RF classifier to enhance model performance and ensure 
effective seizure detection.

Parameter tuning of RF using GWO
Grey wolf optimization [58] is a metaheuristic optimiza-
tion algorithm inspired by the social behavior and hunting 
strategies of grey wolves in nature. GWO has gained promi-
nence for solving complex optimization problems due to its 
simplicity and effectiveness. The algorithm finds the best 
answers in various domains by imitating the grey wolf hunt-
ing strategy and leadership structure, including engineering, 
machine learning, and data analysis. In the GWO algorithm, 
grey wolves are classified into different hierarchical lev-
els: alpha, beta, delta, and omega. This hierarchy is based 
on their leadership and social roles in the pack. The alpha 
and beta wolves hold the highest position in the pack, while 
the omega wolves are the lowest. The alpha wolves are the 
leaders of the pack. GWO imitates the grey wolf’s hunting 
tactic of circling and attacking its prey. To get closer to the 
ideal solution, the wolves, or solutions, adjust their locations 
in response to the positions of the alpha, beta, and delta 
wolves. The alpha, beta, and delta wolves’ positions serve as 
a guide for wolves as they change their places.

RF is a powerful classifier, but its performance is sen-
sitive to hyperparameters. GWO optimizes important 
parameters that impact RF performance when applied 
to the RF classifier’s hyperparameter tuning. These 



Page 10 of 23Dokare and Gupta ﻿Acta Epileptologica            (2025) 7:42 

parameters include the maximum depth of the trees (max_
depth), the number of decision trees (n_estimators), and 
the minimum number of samples needed to split a node 
(min_samples_split). The algorithm  1 describes the steps 
of GWO employed for parameter optimization.

Algorithm 1  Grey wolf optimization (GWO)

In this proposed work, we have employed a pack of 
5 wolves to optimize two parameters of the RF classi-
fier, such as the number of estimators (n_estimators) 
and the maximum depth (max_depth). The wolves rep-
resent potential solutions, where each wolf ’s position 



Page 11 of 23Dokare and Gupta ﻿Acta Epileptologica            (2025) 7:42 	

corresponds to specific values for n_estimators and 
max_depth. Initially, the positions of the wolves are 
randomly set within given bounds: n_estimators ranges 
from 30 to 100, and max_depth from 3 to 20. Over 10 
iterations, the wolves update their positions based on 
the influence of the top three wolves, alpha, beta, and 
delta, which represent the best-performing solutions. 
In each iteration, the wolves move closer to the top 
wolves to refine the solution space.

A control parameter, α , which dynamically decreases 
over iterations to balance exploration and exploitation. 
During the initial stages, a higher α encourages explora-
tion, enabling the wolves to extensively search the hyper-
parameter space. As α decreases, the focus shifts towards 
exploitation, allowing the wolves to refine their search 
around the best solutions identified so far. The iterative 
process of position updates and fitness evaluation contin-
ues until the wolves’ fitness converges to an ideal solution 
or the predetermined number of iterations is reached. 
The position of the alpha wolf represents the most opti-
mal solution. This hierarchical and cooperative behav-
ior helps the wolves converge towards an optimal set of 
parameters that maximize the model’s cross-validation 
accuracy, eventually yielding the best combination of n_
estimators and max_depth for the RF classifier. This final 
solution ensures that the RF model achieves improved 
classification performance, leveraging the integration of 
metaheuristic optimization with ensemble learning. This 
approach effectively balances exploration and exploita-
tion, improving the classifier’s performance.

Metrics for performance evaluation
The performance of the seizure detection model is evalu-
ated by determining the metrics, namely, accuracy, sen-
sitivity, and specificity. Relying on accuracy without 
properly evaluating the model using other assessment 
metrics can lead to erroneous predictions when apply-
ing a machine learning model to data that hasn’t been 
observed yet. Hence, this proposed work evaluates the 
performance of the model using accuracy, sensitivity, and 
specificity, which are standard metrics derived from the 
confusion matrix. The confusion matrix provides a com-
prehensive summary of the classifier’s predictions by cat-
egorizing them into four outcomes:

•	 True positive (TP): Seizure instances correctly identi-
fied as seizures.

•	 True negative (TN): Non-seizure instances correctly 
identified as non-seizures.

•	 False positive (FP): Non-seizure instances incorrectly 
identified as seizures.

•	 False negative (FN): Seizure instances incorrectly 
identified as non-seizures.

These values are used to compute the performance 
metrics as follows:

Results
The experimental outcomes and comparison with pre-
vious work are presented in this section. This includes 
results of feature selection and analysis of the perfor-
mance of the proposed patient-specific seizure detection 
system based on the classification accuracy, sensitivity, 
and specificity metrics across all patients included in the 
CHB-MIT and Seina datasets. In accordance with the 
methodology proposed in our earlier work [46], this pro-
posed work has utilized five selected EEG channels for 
each patient to ensure efficient processing while retain-
ing critical spatial information relevant to seizure activ-
ity. The classifier classifies the data into segments that are 
seizure/ictal and those that are non-seizure/inter-ictal. 
Labels ‛1’ and ‛0’ denote the seizure and non-seizure seg-
ments, respectively. The selected feature set is split into 
two subsets: 70% is used for training and 30% is reserved 
for testing. Five-fold cross-validation is applied dur-
ing the training phase to prevent overfitting and ensure 
robust evaluation. A separate model is trained for each 
patient, and performance metrics, including accuracy, 
sensitivity, and specificity, are calculated to evaluate its 
effectiveness.

Results of feature selection using ACO
After applying ten extracted features to ACO for feature 
selection, it identifies the most relevant features by itera-
tively updating pheromone levels on features, guiding the 
search toward an optimal subset that improves the per-
formance of the RF model. Figure 6a illustrates the evolu-
tion of pheromone levels for each feature across multiple 
iterations during the optimization process for patient 8 of 
the CHB-MIT dataset. Initially, the pheromone levels are 
uniformly low across most features, reflecting the algo-
rithm’s initial uncertainty regarding their importance. 
As iterations progress, certain features, such as features 
1, 3, and 7, exhibit consistently increasing pheromone 
levels, indicating their growing importance in the opti-
mization process. Conversely, features like features 0 
and 4 maintain low pheromone levels, suggesting they 

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)Sensitivity =
TP

TP + FN

(5)Specificity =
TN

TN + FP
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contribute less to the objective function and are conse-
quently de-prioritized. This demonstrates how the algo-
rithm efficiently identifies relevant features by reinforcing 
pheromone levels for high-contributing features while 
reducing those for less important ones, showcasing the 
adaptiveness of the pheromone update mechanism in 
feature selection.

At iteration 1, the pheromone levels are very low for all 
features, as the algorithm is just starting to explore. Ini-
tially, no feature has a strong preference over the others. 

This implies that all features are more or less equally 
likely to be selected based on random probability. It 
hasn’t yet determined which features are important, so 
it explores various features. In this case, feature 3 has a 
higher pheromone level, meaning it was selected more 
frequently, and therefore, the algorithm believes feature 
3 could be important, leading to a best score of 0.9365 
as shown in Fig.  7. In iteration 2, the algorithm contin-
ues exploring but starts refining its choices. It increases 
the pheromone level for feature 3, which performed well 

Fig. 6  Pheromone level dynamics during the ACO-based feature selection process for patient 8 of the CHB-MIT dataset. a Variation in pheromone 
levels across iterations, b Heatmap representing the pheromone level intensity of each feature over iterations (feature indexing– 0: Minimum, 
1: Maximum, 2: Mean, 3: Standard deviation, 4: Kurtosis, 5: Skewness, 6: Spectral entropy, 7: Sample entropy, 8: Permutation entropy, 9: Shannon 
entropy)
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in the first iteration, signaling a preference for it. Feature 
7 is also explored further, as the algorithm evaluates the 
most beneficial features. It is important to note that fea-
ture 1 is not chosen despite having a similar pheromone 
level to features 3 and 7 in this iteration. This occurs as a 
result of the algorithm’s selection procedure, which com-
bines a probabilistic decision-making strategy that strikes 
a balance between exploration and exploitation with 
pheromone levels. While feature 1’s pheromone level is 
comparable, the stochastic nature of the algorithm favors 
other features, like 3 and 7, due to their higher relative 

probabilities or the algorithm’s inclination to diversify 
its search in the early stages. However, recognizing the 
potential importance of feature 1, the algorithm still 
increases its pheromone level, ensuring it remains a 
strong candidate for selection in subsequent iterations. 
This adaptive mechanism helps refine the search space 
over time while preventing premature convergence.

As the iterations continue, the algorithm becomes 
more confident in its choices. By iterations 3 and 4, it 
starts to focus on a smaller subset of features, such as 
features 1, 3, 7, and 9, because the pheromone levels for 

Fig. 7  ACO-based feature selection and optimization performance for patient 8 of the CHB-MIT dataset. a Selected features per iteration, b Best 
scores across iterations. (feature indexing– 0: Minimum, 1: Maximum, 2: Mean, 3: Standard deviation, 4: Kurtosis, 5: Skewness, 6: Spectral entropy, 7: 
Sample entropy, 8: Permutation entropy, 9: Shannon entropy)
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these features are higher. Figure 6b shows that the algo-
rithm is exploiting the features it found to be successful 
in earlier iterations, while still exploring a little in case 
there is a better feature to find. By the 8th iteration, the 
pheromone levels for features 1, 3, 5, 6, 7, and 9 are high, 
indicating that the algorithm has exploited these features 
the most, having found them to be the most beneficial for 
the task. This shows how ACO efficiently balances explo-
ration (finding new features) and exploitation (focusing 
on the best ones) to improve results.

Figure  7a shows a binary activation map of features 
selected during each iteration for patient 8. It illustrates 
the evolution of selected features across ten iterations 
using the ACO. It is evident that features such as 1, 3, 6, 
7, and 9 are consistently selected from iteration 4 to itera-
tion 10, indicating their strong discriminative power in 
distinguishing seizure and non-seizure patterns. Other 
features, like 5, emerged in later iterations, highlighting 
the progressive refinement of the selection process as the 
algorithm explores optimal subsets. Figure  7b presents 
the corresponding best classification score achieved in 
each iteration. A sharp increase in accuracy is observed 
from iteration 1 to 3, after which the performance pla-
teaus, suggesting convergence of the optimization 

process. This indicates that the algorithm efficiently con-
verges to a high-performing feature subset within the 
initial few iterations, enhancing computational efficiency 
without compromising accuracy. Features that show 
persistent activation, such as features 3 and 7, are likely 
the most critical for the model’s performance. The plot 
shown in Fig. 7a and b demonstrates that the algorithm 
successfully converges to a meaningful and stable set of 
features.

The heatmap depicted in Fig.  8 provides a clear view 
of the feature selected by ACO across 24 patients of the 
CHB-MIT dataset, highlighting which features are cho-
sen by the model for each patient. From the heatmap, we 
observe that feature 9 (Shannon entropy), appears to be 
the most frequently selected followed by feature 1 (Maxi-
mum value), feature 3 (Standard deviation), and feature 
8 (Permutation entropy), suggesting that these features 
are crucial for the model’s ability to detect seizures across 
various EEG patterns. These features seem critical for the 
model’s generalizability, making them commonly used in 
the context of seizure detection across a wide range of 
patients. On the other hand, some features, such as fea-
ture 0 (Minimum value), feature 2 (Mean), and feature 
5 (Skewness), are rarely selected with counts 10 and 11, 

Fig. 8  Heatmap showing ACO-based selection of features across 24 patients of the CHB-MIT dataset. The X-axis represents individual patients 
(PT 1 to PT 24), while the Y-axis denotes different features (0 to 9). The blue shaded cells of the heatmap indicate the selection of specific features 
for a specific patient. (feature indexing– 0: Minimum, 1: Maximum, 2: Mean, 3: Standard deviation, 4: Kurtosis, 5: Skewness, 6: Spectral entropy, 7: 
Sample entropy, 8: Permutation entropy, 9: Shannon entropy)
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indicating that these may be more patient-specific. Such 
features may not be as universally informative across all 
patients or could have less relevance in certain seizure 
types.

Furthermore, after 10 iterations, the feature selection 
results stabilized, with no further changes observed in 
the features chosen by the model. Hence, the feature set 
selected in iteration 10 is considered final for model eval-
uation. This suggests that the optimization process has 
reached a convergence point and further iterations did 
not yield any new or better performing feature subsets.

To evaluate the influence of the number of ants on the 
performance of the ACO-based feature selection frame-
work, extensive experimentation is conducted on both 
the CHB-MIT and Siena EEG datasets. Figure  9a and  c 
represent the execution time for different numbers of 
ants on the CHB-MIT and Siena datasets, respectively, 
while Fig. 9b and d show the corresponding variation in 
sensitivity. Sensitivity serves as a key metric for evaluat-
ing seizure detection performance, whereas execution 
time is assessed to determine the computational effi-
ciency of the method.

From the execution time plots, a consistent upward 
trend is observed as the number of ants increases. For 
the CHB-MIT dataset, execution time increases steeply 
from approximately 3 seconds at 1 ant to nearly 50 sec-
onds at 15 ants, as depicted in Fig.  9a. A similar trend 
is seen in the Siena dataset, where the time rises from 
around 2 seconds at 1 ant to nearly 30 seconds at 15 ants, 
as presented in Fig. 9c. This increase is expected due to 
the higher computational load and search space evalua-
tion as more ants contribute to the solution search pro-
cess. These results highlight a critical trade-off between 
performance and computational efficiency.

On the other hand, as shown in Fig. 9b and d, the sen-
sitivity plots reveal that the performance improves drasti-
cally from 1 to 3 ants, then stabilizes beyond 5 ants for 
both datasets. For instance, in the CHB-MIT dataset, 
sensitivity jumps from about 0.4 to over 0.9 and remains 
consistently high, close to 0.9, up to 15 ants, with minor 
fluctuations. The Siena dataset demonstrates a similar 
trend, achieving peak sensitivity by around 5 ants and 
showing negligible gains thereafter. Notably, these tim-
ings correspond to processing 671 segments of 4 seconds 
EEG data from the CHB-MIT dataset and 269 segments 
of 4 seconds EEG data from the Siena dataset.

These findings suggest that increasing the number 
of ants beyond five does not substantially enhance sen-
sitivity, while it significantly increases execution time. 
Therefore, an optimal configuration lies around 5 ants, 
where high classification performance is achieved with 
reasonable computational demand. This balance makes 
the system more efficient and suitable for real-time or 

resource-constrained environments. Furthermore, it 
demonstrates the robustness of the ACO-based feature 
selection method across different datasets, reinforcing its 
applicability and scalability.

Results of a seizure detection
The features selected by the ACO, as illustrated in Fig. 8, 
are utilized as input to the GWO-optimized RF classi-
fier, enabling patient-specific training and evaluation for 
improved seizure detection performance. The accuracy 
for each patient is calculated based on the model’s per-
formance in correctly classifying seizure and non-seizure 
events. The results varied between patients, reflecting 
the individualized nature of the EEG signals. The accu-
racy for each patient, as illustrated in Fig.  10a and  b, 
demonstrates the robustness and generalizability of the 
proposed ACO-GWO-RF framework. Across both CHB-
MIT and Seina datasets, the model consistently achieves 
high accuracy, typically exceeding 90% for the majority of 
patients. This indicates that the ACO-based feature selec-
tion effectively captures the most informative features 
while discarding redundant or irrelevant ones. Simulta-
neously, the GWO-based hyperparameter tuning allows 
the RF classifier to adapt optimally to the characteris-
tics of each dataset. The stability of accuracy across var-
ied patient profiles suggests strong overall classification 
capability, making the proposed method reliable for both 
inter- and intra-subject seizure detection tasks.

Sensitivity gauges how well the classifier can identify 
seizures within the dataset. As depicted in Fig. 10c and d, 
the sensitivity of the model measures its ability to cor-
rectly identify seizure events. The sensitivity achieved 
for most of the patients of the CHB-MIT dataset is above 
80%. However, slightly lower sensitivity in certain cases, 
such as patients 16 and 21, can be attributed to factors 
such as shorter seizure segment durations, higher noise 
levels, or the very frequent occurrence of seizures. This 
indicates that the model performs well in detecting sei-
zures for nearly all individuals in the dataset. The sen-
sitivity obtained for the patients of the Seina dataset 
is above 80%. The proposed method maintains a com-
mendable detection rate in both datasets, validating the 
model’s competence in identifying seizure events. The 
feature subsets selected by ACO likely preserve seizure-
relevant temporal and frequency-domain characteristics, 
while the GWO-tuned RF classifier contributes to reduc-
ing false negatives. Despite the variability, the overall sen-
sitivity values confirm the model’s clinical relevance in 
timely seizure detection.

The specificity of the model, which measures its ability 
to correctly identify non-seizure events, is notably high 
across all patients of the CHB-MIT dataset, with values 
consistently above 96% as shown in Fig.  10e. Even the 
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specificity obtained for the patients of the Seina dataset 
is above 89% as depicted in Fig.  10f. This high specific-
ity indicates that the model is highly effective at correctly 
classifying non-seizure periods across diverse patients, 
minimizing false positives and ensuring that normal 
brain activity is not misclassified as a seizure event. 
High specificity is crucial in seizure detection, as false 

alarms can cause unnecessary stress for both patients 
and healthcare providers, potentially leading to unwar-
ranted medical interventions. This reliability highlights 
its practicality for real-world clinical seizure detection 
applications.

The mean performance measures are calculated across 
all patients to provide a comprehensive evaluation of the 

Fig. 9  Impact of ant count on execution time and detection sensitivity. This figure shows how changing the number of ants in the ACO-based 
feature selection algorithm influences (a, c) execution time and (b, d) sensitivity for the CHB-MIT (top row) and Siena (bottom row) EEG datasets
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Fig. 10  Performance metrics obtained across all patients of the proposed approach on the CHB-MIT and Seina datasets: a Accuracy (CHB-MIT), 
b Accuracy (Seina), c Sensitivity (CHB-MIT), d Sensitivity (Seina), e Specificity (CHB-MIT), f Specificity (Seina), g Average performance across patients 
(CHB-MIT), and h Average performance across patients (Seina)
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model’s effectiveness. The mean values of accuracy, sen-
sitivity, and specificity across all patients of the CHB-
MIT dataset obtained are 96.70%, 92.66%, and 99.24%, 
respectively, as summarized in Fig. 10g. The mean values 
of accuracy, sensitivity, and specificity across all patients 
of the Seina dataset obtained are 93.01%, 89.82%, and 
96.26%, respectively, as shown in Fig. 10h. The high mean 
accuracy shows that the model correctly classifies most 
seizure and non-seizure events across the patient group. 
The high value of mean sensitivity suggests that the 
model effectively detects seizure occurrences for a wide 
range of patients, though slight variability may exist at 
the individual level. Finally, the high value of mean speci-
ficity underscores the model’s strength in avoiding false 
positives across all patients, reinforcing its potential as a 
dependable tool for seizure monitoring in diverse patient 
populations.

The best score achieved during the ACO and GWO 
stages using the CHB-MIT dataset, as depicted in 
Fig.  11, reflects the role each optimization technique 
plays in enhancing model performance. During the 
ACO stage, the best score represents the highest classi-
fication performance achieved by the selected features 
at each iteration. The ACO stage focuses on optimizing 
the feature selection, where the best score started from 
0.943 and gradually increased, reaching 0.985 by the 4th 
iteration and remaining constant thereafter for patient 
8, as shown in Fig.  7b. This signifies the efficiency of 
ACO in identifying key features relevant to seizure 
detection. On the other hand, the GWO stage is used 
for parameter optimization, where it fine-tunes the 

model’s hyperparameters to achieve the best score. As 
illustrated in Fig. 11, the plot of the average best scores 
across patients shows that both ACO and GWO pro-
vide considerable improvements in seizure detection 
accuracy, with GWO achieving higher average scores 
compared to ACO for most patients.

This suggests that GWO’s nature of exploring the solu-
tion space more effectively leads to better optimization, 
which is reflected in the higher average scores. Addition-
ally, while both techniques yield similar results in terms 
of performance stability across patients, some individual 
patients benefit more from one optimization approach 
over the other. This highlights the importance of select-
ing an appropriate optimization strategy tailored to the 
specific characteristics of each patient. The test accuracy 
of the model consistently outperforms the best scores 
obtained during the optimization stages using the ACO 
and GWO techniques. This is due to the continuous 
improvement of the model through feature selection and 
hyperparameter optimization, leading to better generali-
zation and overall predictive accuracy compared to the 
intermediate scores observed during the optimization 
process.

The proposed patient-dependent seizure detection sys-
tem demonstrates strong performance across multiple 
patients from the CHB-MIT and Seina datasets, achiev-
ing high accuracy, specificity, and sensitivity. While the 
system performs well in most cases, the lower perfor-
mance observed in a few patients from both datasets 
highlights the need for additional refinement to address 
patient variability. The system shows great promise for 

Fig. 11  Average best scores across iterations using ACO and GWO optimization techniques and final model testing accuracy using CHB-MIT
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clinical and real-time seizure detection applications, 
according to the overall results.

Comparison with existing works
The performance of the proposed method is compared 
with existing works demonstrated by different authors 
reported in this paper, as shown in Table  3. The short 
segment length of 1 second [26] enables fine-grained 
analysis of rapid signal changes, but leads to increased 
computational complexity and reduced signal-to-noise 
ratio. The optimal segment length of 4 seconds is used in 
this proposed work to reduce computational complexity 
without sacrificing the accuracy of the analysis for long-
term EEG recordings.

The accuracy of this proposed work using the CHB-
MIT dataset is 96.70%, which is higher than many of 
the prior studies with lower accuracies: 92.62% [2], 
94.83% [42], and 93.50% [3]. This proposed method using 
the CHB-MIT dataset demonstrated a 9% improve-
ment in accuracy compared to the approach [37] and an 
increase of 1% to 3% over the results reported [2, 3, 36, 
42, 43]. This improvement highlights the superior perfor-
mance of this proposed method in accurately detecting 
seizures.

When comparing specificity using the CHB-
MIT  dataset, this proposed method achieved 99.24%, 
which is close to the highest reported specificity of 
99.48% by [42]. The specificity achieved by our pro-
posed method is identical to that obtained by [26, 42]. 

However, our method outperforms [2, 3, 34, 36, 37, 39, 
44] demonstrating an improvement in specificity rang-
ing from 1% to 11%. This indicates that the proposed 
method is highly effective at minimizing false positives, 
which is a critical aspect in seizure detection applica-
tions where false alarms can lead to unnecessary treat-
ments and disruptions.

This proposed method also demonstrates an excel-
lent sensitivity of 92.66% across all patients of the CHB-
MIT dataset. An improvement in sensitivity by 1% to 20% 
is observed compared to prior studies [26, 34, 36, 37, 39, 
40] while a decrease of 1% to 5% is observed when com-
pared to [2] across all patients. Unlike previous studies 
with limited patient cohorts (e.g., 5 patients [3], 8 patients 
[42], or 18 patients [44]), our approach maintains supe-
rior metrics even when compared under matched cohort 
sizes [3, 42, 44]. This proposed method also exhibits 
outstanding performance on the Siena dataset, reinforc-
ing its effectiveness and generalizability across different 
clinical EEG datasets. This work provides a robust seizure 
detection capability, effectively balancing high sensitivity 
with minimal false positives.

The comparative analysis highlights the efficacy of 
the proposed ACO-GWO-RF method in the context 
of seizure detection. Unlike many existing works that 
either focus on a single dataset or show imbalanced 
results across metrics, the proposed method offers a 
well-rounded performance across both the CHB-MIT 
and Siena datasets. It demonstrates the ability to deliver 

Table 3  The comparison of performance measures with other reported work. (Performance metrics are expressed as percentages)

NP Number of patients, NC Number of channels, LS Length of the segment

 ACC​ Accuracy, SEN Sensitivity, SPC Specificity

Work NP NC LS Performance metrics

ACC​ SPC SEN

Samiee K. et al. (2015) [34] 22 23 1.25 − 97.74 70.19

Samiee K. et al. (2017) [26] 23 23 1 − 99.10 70.40

Wei et al. (2019) [39] 23 23 5 - 92.46 74.08

- 95.89 72.11

Zhang et al. (2019) [38] 23 - - - - 92.20

Zabihi et al. (2019) [36] 23 - - 95.11 95.16 91.15

Yao et al. (2021) [37] 23 17 - 87.80 88.30 87.30

Jiang et al. (2021) [40] 22 18 - - - 86.34

Guo et al. (2022) [2] 23 18 5 92.62 92.57 95.55

Jana et al. (2023) [3] 5 18 - 93.50 93.90 93.19

Poorani et al. (2023) [42] 8 23 - 94.83 99.48 90.18

Zhu et al. (2024) [44] 18 18 - - 98.24 97.27

Sadam et al. (2024) [43] 22 23 - 94.48 - -

Proposed work: CHB-MIT 24 5 4 96.70 99.24 92.66
Proposed work: Seina 13 5 4 93.01 96.26 89.82
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consistently high results while maintaining clinical rel-
evance through effective capture of seizure patterns.

This proposed method has achieved over 90% accuracy, 
sensitivity, and specificity across both datasets, under-
scoring its robustness and generalizability. This strong 
performance illustrates the potential of the ACO-GWO-
RF approach as a reliable patient-specific solution. The 
consistent outcomes across varied patient data validate 
its suitability for clinical environments and reinforce its 
advantage over several existing approaches reviewed in 
this proposed work.

Discussion
This proposed work has demonstrated a novel ACO-
GWO-RF approach for patient-specific seizure detection 
using ACO for feature selection and GWO for hyper-
parameter tuning of RF classifier. Because ACO mim-
ics the behavior of ants seeking the shortest path, it can 
scan a large area and identify the most important char-
acteristics, making it especially useful for feature selec-
tion. ACO is robust in handling high-dimensional data 
and can effectively reduce the feature set while retaining 
the most discriminative features, which is crucial in EEG 
data with many channels and features. This ensures that 
only the most relevant features for seizure detection are 
selected, reducing redundancy and improving the clas-
sifier’s accuracy. The ACO algorithm effectively selected 
patient-specific feature subsets, reflecting the variability 
in EEG patterns among individuals. Each patient’s model 
converged differently, selecting unique features as shown 
in Fig. 8 while maintaining high accuracy. This adaptabil-
ity underscores ACO’s capability to handle inter-patient 
variability, making it a valuable tool for personalized sei-
zure detection. It is observed that features 1, 3, and 9 are 
the most frequently selected features, while features 0, 2, 
and 5 are rarely selected.

The ACO algorithm is particularly suitable for EEG 
feature selection, as it probabilistically explores combi-
nations of features, preserving diversity and allowing the 
emergence of globally optimal solutions. To balance the 
trade-off between computational efficiency and perfor-
mance, a parameter sensitivity analysis is conducted by 
varying the number of ants from 1 to 15. It is observed 
that increasing the ant population improves sensitivity 
up to a certain threshold, after which the performance 
stabilizes, particularly after 5 ants in both the CHB-MIT 
and Siena datasets. However, execution time increases 
linearly with the number of ants, which presents a practi-
cal limitation for real-time applications. An optimal con-
figuration using 5 ants is chosen to ensure computational 
feasibility without compromising performance.

GWO excels in optimizing the hyperparameters of 
RF. GWO conducts a global search for ideal parameters, 

emulating the social structure and hunting techniques of 
grey wolves to make sure that the classifier is optimized 
to yield the best results. The adaptive nature of GWO 
helps overcome the limitations of manual parameter tun-
ing and provides better convergence toward an optimal 
solution. The adaptive nature of ACO and GWO makes 
the method particularly suitable for patient-specific sei-
zure detection. ACO can adapt to the specific features of 
the EEG signal of each patient, while GWO optimizes the 
classifier’s parameters for better performance on indi-
vidual patient data. ACO-GWO strikes a better balance, 
where ACO focuses on exploring diverse feature combi-
nations, and GWO efficiently exploits this information 
to fine-tune the classifier. As a result, there is a reduced 
likelihood of becoming trapped in local optima, improv-
ing performance overall.

The high specificity of the proposed method ensures 
that false positives are minimized, making it suitable for 
clinical applications where avoiding unnecessary inter-
ventions is crucial. When compared to other state-of-
the-art methods, our approach consistently performs 
better. This proposed approach has achieved excellent 
accuracy and specificity, along with relatively high sensi-
tivity for both datasets. This combination of high accu-
racy, specificity, and competitive sensitivity positions our 
method as a promising solution for seizure detection, 
offering a more efficient, reliable, and adaptable model 
that can be tailored to individual patients. Compared to 
existing studies [2, 37] employing traditional machine 
learning models, the proposed framework achieved com-
petitive results, with accuracy exceeding 95% for most 
patients of CHB-MIT and 90% for most patients of the 
Seina dataset.

While the proposed framework demonstrates strong 
overall performance, sensitivity for specific patients, such as 
patients 6, 12, 14, and 16, is comparatively low. Incorporat-
ing data augmentation techniques could help address these 
challenges by enhancing the training data and improving 
the model’s robustness. Additionally, the approach requires 
further validation on larger and more diverse datasets to 
ensure consistent performance and reliability.

Accurate and timely detection of epileptic seizures is 
crucial for improving patient care and supporting clinical 
decision-making. The proposed ACO-GWO-RF frame-
work addresses this need by achieving high sensitivity and 
specificity, thereby reducing the chances of missed detec-
tions and false alarms, an essential aspect of continuous 
EEG monitoring. This reliability alleviates the burden on 
clinicians who often manually inspect lengthy EEG record-
ings. By adapting to patient-specific seizure patterns, 
the model also aligns with the principles of personalized 
medicine, offering more individualized assessments. Fur-
thermore, the framework enhances clinical interpretability 
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through the transparent decision-making structure of the 
ACO and RF algorithms. Systematic analysis of feature 
selection trends highlights the most influential features 
contributing to seizure detection, providing neurologically 
meaningful insights. Overall, the proposed framework 
stands out as a reliable and adaptable solution for seizure 
detection, promoting both improved clinical decision sup-
port and personalized healthcare outcomes.

Conclusions
This proposed work highlights the significant potential of 
metaheuristic optimization methods in healthcare appli-
cations, particularly for seizure detection using EEG data. 
Developing a model for seizure detection is challenging due 
to the EEG variability among various patients. This work 
offers a novel method for seizure detection using multi-
channel EEG data, combining statistical and entropy-based 
features with metaheuristic optimization techniques. This 
proposed work has employed ACO for efficient feature 
selection, reducing complexity while retaining key discrim-
inative information. Additionally, GWO is applied to fine-
tune the hyperparameters of the RF classifier, enhancing 
performance. This proposed work has achieved the mean 
values of accuracy, sensitivity, and specificity as 96.70%, 
92.66%, and 99.24%, respectively, across all patients from 
the CHB-MIT dataset. The mean values of accuracy, sen-
sitivity, and specificity obtained using the Seina dataset are 
93.01%, 89.82%, and 96.26%, respectively.

This proposed methodology, outperforming existing 
approaches, demonstrates high accuracy, specificity, and 
sensitivity. The key novelty lies in integrating ACO and 
GWO, creating an adaptive and robust pipeline tailored 
to patient-specific seizure patterns. This proposed work 
offers a promising tool for clinicians, enabling more pre-
cise and personalized seizure detection. The proposed 
ACO-GWO-RF framework can be extended for real-time 
deployment by optimizing it for lightweight hardware 
platforms. Future work may also explore the integration of 
domain-specific interpretability modules to support clini-
cal decision-making and incorporate data augmentation 
techniques to enhance the diversity of the training data.
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