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Abstract
Purpose – Blockchain technology (BCT) can play a vital role in manufacturing industries by providing visibility
and real-time transparency. With BCT adoption, manufacturers can achieve higher productivity, better quality,
flexibility and cost-effectiveness. The current study aims to prioritize the performance metrics and ranking of
enablers that may influence the adoption of BCT inmanufacturing industries through a hybrid framework.

Design/methodology/approach – Through an extensive literature review, 4 major criteria with 26 enablers
were identified. Pythagorean fuzzy analytical hierarchy process (AHP) method was used to compute the
weights of the enablers and the Pythagorean fuzzy combined compromise solution (Co-Co-So) method was
used to prioritize the 17-performance metrics. Sensitivity analysis was then carried out to check the robustness
of the developed framework.

Findings – According to the results, data security enablers were the most significant among themajor criteria,
followed by technology-oriented enablers, sustainability and human resources and quality-related enablers.
Further, the ranking of performance metrics shows that data hacking complaints per year, data storage capacity
and number of advanced technologies available for BCT are the top three important performance metrics.
Framework robustness was confirmed by sensitivity analysis.

Practical implications – The developed framework will contribute to understanding and simplifying the
BCT implementation process in manufacturing industries to a significant level. Practitioners and managers
may use the developed framework to facilitate BCT adoption and evaluate the performance of the
manufacturing system.

Originality/value – This study can be considered as the first attempt to the best of the author’s knowledge as
no such hybrid framework combining enablers and performance indicators was developed earlier.
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1. Introduction
The term Industry 4.0 refers to the fourth industrial revolution in production and
manufacturing processes. It aims to include advanced digital technologies with physical
systems to make things work more efficiently and fast. This includes machine-to-machine
communication and, a higher production rate with minimum wastage. Blockchain,
introduced by Nakamoto (2008), is a distributed ledger technology created to deal with
cryptocurrencies. It has since been successfully implemented in the finance sector and
reached new heights. But now its impact has reached beyond finance and its features like
transparency and immutability provide data security. It is now attempting to expand into new
markets such as health care, real estate, education, logistics and transportation and
government sectors. Blockchain can support Industry 4.0 by generating a transparent record
of production processes, developing a secure and transparent supply chain and solving
quality issues (Mukherjee et al., 2021; Espinoza Pérez et al., 2022; Shah et al., 2022). Also, it
helps to manage the complex value chain (Wan et al., 2020). Industry 4.0 introduced the
concepts of cyber-physical systems, machine-to-machine (M2M) communication and the
Internet of Things into the industries. M2M communication refers to the exchange of
information between industrial components without any human intervention. Authors used
blockchain to enable M2M interactions and create an M2M electricity market for the
chemical industry. The author concludes that blockchain technology (BCT) has significant
potential to support and improve the efficiency gains of this industrial revolution when
thoroughly explored (Sikorski et al., 2017). Supply chain 4.0 is the digitalization of supply
chains, that focuses on the use of diverse technologies such as Blockchain, Artificial
Intelligence (AI), Internet of Things (IoT), Big Data Analytics, Augmented Reality, Cloud
Computing, Robotics and Additive Manufacturing, to generate goods and services. These
technologies are the enablers of Industry 4.0. Blockchain plays a very important role in the
digitization of the supply chain by providing traceability and transparency (Gharaibeh et al.,
2022). BCT has evolved as one of the most unique and disruptive technology innovations in
the 21st century. BCT embraces a great potential for transforming operations across various
industries, from finance to, supply chain management, health care and beyond (Marengo and
Pagano, 2023). The authors explained, how Blockchain and IoT technologies together can
improve the agility in Industry 4.0. By using smart contracts and the immutability of blockchain,
automation of transactions and optimization of processes reduction in intermediaries can be
achieved which ultimately leads to improvement in agility, cost reduction and quick decision-
making. The authors also mentioned scalability and interoperability issues (Rane and Narvel,
2019). In an article, the authors focus on the credibility and security of data in collaborative
manufacturing supply chains (CMSC). Which may improve the efficiency of association among
stakeholders. It is required that the manufacturing data should be shared between enterprises and
customers to avoid unfair production decisions or unresponsive production management by
CMSC. The authors suggested a blockchain-driven framework that focuses on a cross-enterprise
CMSC. The authors established a six-layered blockchain-based manufacturing data sharing
system (BMDSS) framework with two data upload algorithms and two smart contracts. A
demonstrative case was also studied to authenticate the effectiveness of the suggested framework
(Zheng et al., 2024). The authors highlighted applications of blockchain to product life cycle
management (PLM) with a smart manufacturing background. The unique features in data storage
and computing like traceability, data security and decentralized consensus make blockchain a
suitable technology for smart manufacturing, particularly in PLM. Authors proposed a framework
based on which they have explored the applications of blockchain in four stages of product life
cycle viz, product design, manufacturing, usage and recycling (Chen et al., 2022). It is a challenge
for many small-medium enterprises (SMEs) to improve the transparency in the manufacturing
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supply chain. In the supply chain, keeping track of the cooperation process between distributed
SMEs is an important basis for the understanding of supply chain transparency. The authors
demonstrated a Blockchain-based and event-driven tracking (BET) three-layered framework that
could guide SMEs to create a blockchain-based cooperation tracking platform as per their
requirements. The author also presented a case study to validate the framework (Liu et al., 2024).
In a study, authors used the resource-based view (RBV) and contingency theories in their
framework to evaluate the relationship between transparency of the supply chain, alignment,
adaptability, agility andwillingness to implement blockchain among SMEs. And observed that the
ability of blockchain to improve supply chain transparency and agility influences the intentions of
SMEs to adopt blockchain. The data were obtained from 204 SMEs in Malaysia’s manufacturing
sector and analysis was carried out with the partial least squares technique (Iranmanesh et al.,
2023). In Industry 4.0, blockchain can secure all product information, spare parts, raw materials,
sub-assemblies, sales, etc. It lowers the cost and minimizes supply chain disruptions (Javaid et al.,
2021). Blockchain is a relatively new invention that takes various forms. It is a distributed ledger
technology that records every transaction that occurs on the network, arranges it chronologically
and updates the recorded information according to predefined rules. Data hacking is prevented by
the distributed nature of BCT, resulting in transparency and trust (Aghamohammadzadeh and
Fatahi Valilai, 2020). In the modern era of Industry 4.0 and the IoT, manual work in industries is
being automated. Manufacturers must update their work and publish manuals for repair and
maintenance that become easier with blockchain. Blockchain allows for the secret sharing and
storage of data related to confidential weapon and ammunition designs because it provides clear
transactions (Iqbal et al., 2020). BCT integration in industry can ensure data confidentiality and
integrity by providing robust and secure communication systems (Elmamy et al., 2020).

BCT can help to build a sustainable supply chain by improving traceability and
transparency while adhering to environmental standards. However, managers’ lack of
awareness of BCT’s essential features has prevented its effective use in this field (Yousefi
and Mohamadpour Tosarkani, 2022). Although BCT has been lauded, it is not widely
adopted. Despite its numerous benefits, the adoption rate of BCT among organizations has
not reached a high level globally, necessitating additional research in this area (Malik et al.,
2022). Significant work must be done on this platform before organizations will accept BCT
adoption. Organizational executives must recognize the benefits of BCT for their business
This paper proposes a novel framework for overcoming the aforementioned challenges and
facilitating the adoption of BCT in manufacturing industries (Javaid et al., 2021). Few
studies focus on supplier selection, production decisions and distributor location using
circular economy principles and focusing on sustainability and refurbished products. The
author uses a goal programming approach to address the problems. The proposed model
includes multiple objectives such as minimization of cost, minimization of carbon footprints
and maximizing profit from refurbished products (Muneeb et al., 2023).

BCT is still in its early stages, so the literature on it is limited. Adoption of BCT is
accompanied by many challenges and problems, all of which make implementation difficult.
Several frameworks have been developed to assist in successful implementation; however,
selecting an appropriate framework is also a difficult task. Researchers discovered that
incorporating BCT into the supply chain can improve the operational performance of a
manufacturing unit. Features such as real-time information sharing, cyber-security,
transparency and traceability improve performance; however, the lack of a defined
framework limits BCT adoption (Shoaib et al., 2020). There is a notable increase in
blockchain research, but more emphasis is placed on technical aspects, while practical issues
related to blockchain implementation in organizations are ignored (Janssen et al., 2020).
Secure sharing of information and verification is important, which requires reliable
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technologies that can trace Supply Chains (Saberi et al., 2019). Despite the numerous
benefits of BCT, its adoption is slow in the manufacturing sector. To ensure successful BCT
adoption, it is important to identify the enablers that accelerate the adoption process.
Enablers can be defined as the factors that promote the integration, acceptance and effective
implementation of new technologies, systems or processes (Pansare et al., 2022). Enablers
help to overcome barriers, lower risks and improve the atmosphere for invention and
modernization. They also provide a conducive environment and facilitate the required
resources, infrastructure and favorable working conditions. Detailed study and understanding
of these factors provide valuable information that can help the stakeholders to take advantage
and maximize the latency of the innovative technologies. Enablers help in decision-making,
tactics planning, risk management, allocation of resources, etc. Thus, the study of enablers is
necessary to boost the speed of implementation of a new technology. Several researchers
mentioned in their study that, most challenges arise due to ignoring the importance of BCT
adoption enablers. These enablers are the essential characteristics of BCT that increase the
rate of adoption in supply chains (Yousefi andMohamadpour Tosarkani, 2022).

Today organizations are becoming knowledgeable, but the awareness about the numerous
benefits of making the supply chains digital is not yet fully known. Getting the benefits of
new technologies in supply chains is not possible without a suitable implementation process,
which demands an exhaustive preadoption analysis, including enablers and barrier
identification (Vafadarnikjoo et al., 2023; Sharabati and Jreisat, 2024). The authors discussed
that detecting the enablers and barriers to technology adoption is vital for the effective
implementation of technology and the sustainability of the mining industry. Past studies on
technology adoption have mainly focused on service sector organizations. However, there is
a lack of research that specifically addresses the barriers and enablers of technology adoption
in the mining industry (Ediriweera andWiewiora, 2021). Despite various advantages offered
by BCT, there is limited adoption of this technology in manufacturing organizations. Earlier
studies on BCT adoption have focused mainly on different organizations and service sectors
and the identification of enablers and barriers. However, limited literature exists focusing on
a hybrid framework to prioritize the performance metrics for BCTadoption in manufacturing
industries with new MCDM methods. Also, it is necessary to check the effectiveness of the
adoption of selected enablers on the manufacturing system and the overall improvement in the
system due to the same. Hence, the present work focuses on the identification of performance
metrics and ranking them as per the significant impact they have on performance.

To conduct a technology performance analysis, both qualitative and quantitative performance
indicators must be identified. These factors are called performance metrics (Lahane and Kant,
2021; Pansare et al., 2022), and they can be used to evaluate and improve the performance of a
new technology or a system. Furthermore, prioritizing them is important for a system’s successful
evaluation. To enable BCT adoption, a framework is required that can identify enablers and
evaluate their relative weights, performance metrics and ranking. Hence, the current research
article has the following objectives:

• To identify the enablers of BCT adoption in manufacturing industries and prioritize
them based on their weight computation.

• Prioritization and ranking of the performance metrics of BCT adoption in
manufacturing industries.

To achieve these objectives, a thorough literature review of BCTarticles was conducted, and
26 enablers and 17 performance metrics were identified. The Pythagorean fuzzy-AHP
method was used to compute enabler weights, followed by the Pythagorean Fuzzy combined
compromised solution technique (Co-Co-So) method to prioritize performance metrics
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based on expert opinion. Hence, the current study contributes to the domain of BCT by
developing a framework for enablers and performance metrics. This may facilitate the
practitioners during BCT adoption in manufacturing industries and evaluation of the
effectiveness of the same.

The current article is divided into six sections, including this one. Section 2 discusses the
literature review, enablers and performance metrics of BCT, while Section 3 defines the
existing study’s research methodology, including the Pythagorean fuzzy AHP and Co-Co-So
method, as well as the various steps taken (including Flow chart for steps in PF-AHP and PF-
CoCoSo). Section 4 includes data collection from experts and data analysis using a case
application, while Section 5 presents the results and discussion. Finally, Section 6 includes
the conclusions, limitations and future scope.

2. Literature review
This section describes the literature review on BCT adoption in manufacturing industries,
including enablers and performance metrics, as well as the MCDM technique used. The
section below presents some of the findings from the literature review.

2.1 Retrieval and selection of literature
The Scopus database was used to identify the research articles, and 671 articles were retrieved
using keywords like “Blockchain Technology” and “Manufacturing Industries”. After further
filtering, the articles were reduced to 307 peer-reviewed research and review articles written
in English. articles published in peer-reviewed journals and reputed conferences were
considered for this study. Several articles were excluded from the study due to their lack of
relevance to the current subject matter. The first stage of exclusion involved screening the
abstracts and conclusions of the research articles, while the second stage required reading the
entire paper. All relevant articles were segregated and stored separately for future reference.
Articles containing various frameworks and enablers were considered relevant for the study.
These articles were further divided into three categories: articles based on BCT frameworks,
enablers of BCTadoption and variousMCDM techniques used. None of the articles discussed
performance metrics and their ranking relative to enablers. Hence, the 17 quantitative
performance metrics and 26 enablers identified in the research articles can be classified as
general because they apply to BCT applications in a wide range of fields and manufacturing
industries.

2.2 Blockchain technology and its enablers
BCT is a peer-to-peer network system that stores data in a distributed ledger. The network’s
nodes can communicate without the need for a central authority. Distributed ledgers can be
of two types: decentralized, which grants equal rights to all users, and centralized, which
grants special rights to specific users (Esmaeilian et al., 2020).

BCT was developed to enhance trust through its distinct features such as data
immutability, transparency, traceability and secure record keeping (Mendhurwar andMishra,
2023). Blockchain is widely regarded as one of the most important inventions since the
internet. A record cannot be changed or deleted from the system after it has been created and
approved by the blockchain, which prevents fraudulent transactions. The author also
mentioned the most prominent use cases for BCT, such as cryptocurrency, smart contracts,
machine-to-machine communication and the IoT (Efanov and Roschin, 2018). BCT allows
multiple users to verify, preserve and synchronize transaction details. Also, BCT has
provided significant benefits to industries by enabling better and more secure services (Ali
et al., 2021). The Fourth Industrial Revolution (Industry 4.0) enables blockchain applications
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in manufacturing and operations management. BCT aspires to provide transparency,
disintermediation and visibility (Lohmer and Lasch, 2020). Manufacturers find it difficult to
implement sustainable practices in today’s Industry 4.0 environments due to challenges such
as globalization and outsourcing. Blockchain can overcome sustainability challenges
(Ahmad et al., 2021). While changing or introducing a new production BCT network allows
for enterprise resource planning and helps to integrate internal processes. To improve the
quality of manufactured products and respond quickly to customer demands, virtual
enterprises are created and BCT can meet these requirements thanks to its decentralized
structure and secure and authenticated network (Balon et al., 2022).

In the current Industry 4.0 scenarios, data transfer from one system to another is required
using cutting-edge technology such as IoT, AI and M2M communication. Security and
privacy of data are major concerns in areas where cyber fraud is prevalent. It is necessary to
implement a technology that ensures data security. BCT has unique features such as
immutability and transparency that can ensure the security of information. A framework that
facilitates the rapid adoption of BCT in manufacturing industries is required. This section
describes the enablers identified during an extensive literature review. Table 1 contains a
brief description of the identified enablers.

Data provenance indicates the tracking of information, whereas immutability means that
the data is not altered. Several authors consider these factors to be important in ensuring data
safety and privacy while also facilitating the adoption of BCT (Bodkhe et al., 2020). In
manufacturing, it can assist in keeping records of products and producers from the beginning
to the end of the supply chain (Helo and Shamsuzzoha, 2020; Orji et al., 2020). Traceability
in BCT refers to information traceability. Knowing the real-time location of a product or raw
material from its point of origin, can save time and increase productivity (Brandín and
Abrishami, 2021). Francisco and Swanson (2018) describes prediction capability as a benefit
dimension of BCT as it is the ability to predict future requirements such as market demand
and fault predictions which, if addressed promptly, can result in cost and time savings. The
author also discusses the significant impact of Blockchain’s secure data storage and
transaction mechanisms on reducing human errors, fraud in transaction processes, fighting
corruption, manipulation in e-voting, etc. by increasing people’s trust in the government at
both the public and private levels (Ali et al., 2021). BCT also emphasizes clear ownership.
Blockchain can be thought of as a permanent distributed directory that records all
transactions and ownership transfers. It offers customers proof of ownership through
tokenization, making the transaction process transparent and secure (Javaid et al., 2021; Lee
et al., 2019). Data virtualization is the process of collecting data from various sources and
then presenting it in one form to a single virtual view to provide reliable and real-time
information. This feature is very effective in cloud manufacturing, supply chains and various
Industry 4.0 applications by the authors (Kaynak et al., 2020; Mendhurwar and Mishra,
2023; Shah et al., 2022). Operation performance refers to the efficiency of the system’s
various processes. Better operational performance can be achieved by incorporating features
such as transaction transparency into various applications where BCT has been successfully
implemented (Nabipour and Ülkü, 2021).

Energy tracking is possible in BCT because it improves the security and transparency of
energy transactions and allows for new forms of energy management and trading (Gerardi
et al., 2023). Digital Twins, when combined with BCT and AI analytics, can reduce energy
consumption by encouraging users to reduce their carbon footprints and tracking energy-
related data from sensors and smart infrastructures. The author also explained how
decentralized marketplaces can be used to monetize data by tokenizing data ownership,
which reduces intermediaries’ interference and promotes fair business practices. Tendering
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Table 1. Enablers of BCT

Major criteria
enablers Sub-criteria enablers Description References

Data security
enablers (DSE)

Data provenance and
immutability (DSE1)

Data provenance is the
traceability of data from
creation to use, while
immutability is the ability of
data to remain unchanged

Bodkhe et al. (2020); Orji
et al. (2020); Helo and
Hao (2019)

Traceability (DSE2) Ability to trace the movement
of data or information

Brandín and Abrishami
(2021); Francisco and
Swanson (2018), Yang
et al. (2020)

Prediction capabilities
(DSE3)

Blockchain system's capacity
to make predictions about
future events

Ali et al. (2021)

Clear ownership (DSE4) Transparent ownership records
are provided by blockchain

Javaid et al. (2021); Lee
et al. (2019

Secure storage and
transaction (DSE5)

Blockchain is a decentralized
and distributed ledger that
enables secure storage and
transactions

Ali et al. (2021)

Data virtualization
(DSE6)

Data virtualization is the
process of extracting data from
various sources and presenting
it in a unified, virtualized
format

Mendhurwar and Mishra
(2023); Shah et al. (2022);
Kaynak et al. (2020)

Operations performance
(DSE7)

The efficiency and speed with
which various processes within a
blockchain system are executed
is referred to as operation
performance. Eg., a secure
transaction, greater visibility,
faster response time, etc

Nabipour and Ülkü (2021)

Quality-related
enablers (QRE)

Prediction and
preventive maintenance
(QRE1)

BCTcan assist in identifying
equipment failures by securely
storing data about equipment
performance

Lallas et al. (2019)

Quality assurance
activities (QRE2)

It involves testing a variety of
mechanisms and components,
including transactions and data
storage

Khanfar et al. (2021)

Transaction
transparency (QRE3)

Because of its decentralized
nature, blockchain can record
transactions throughout the
network

Ko et al. (2018), Javaid
et al. (2021)

Customer satisfaction
(QRE4)

Customer satisfaction is
ensuring data security,
traceability and transparency in
transactions

Choi et al. (2020)

Reliability (QRE5) Blockchain provides
tamperproof records that can
improve reliability

Karamchandani et al.
(2021)

(continued)
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Table 1. Continued

Major criteria
enablers Sub-criteria enablers Description References

Real-time capability
(QRE6)

Capability to process
transactions quickly and safely
and automated record keeping

Mendhurwar and Mishra
(2023); Shah et al. (2022)

Timeliness (QRE7) Timeliness relates to the
system's capacity to provide
accurate and real-time data
throughout the process

Du et al. (2021);
Karamchandani et al.
(2021)

Sustainability
and HR
enablers (SHR)

Energy tracking (SHR1) To manage energy
consumption across the
facilities data effectively and
effectively to optimize energy
usage

Gerardi et al. (2023),
Teisserenc (2021)

Sustainability practices
(SHR2)

Blockchain provides a
trustworthy, transparent,
traceable and secure system
that promotes sustainability
practices

Saberi et al. (2019); Fu
et al. (2018), Guo et al.
(2023)

Decentralized
marketplace (SHR3)

This reduces dependency on
intermediaries, reduces
transaction costs and supports
fair and sustainable business
practices

Teisserenc (2021)

Employee expertise and
training (SHR4)

Skilled employees contribute
to the improvement of
efficiency and productivity

Sahebi et al. (2020)

Disintermediation
(SHR5)

It means the reduction or
removal of middlemen that can
ultimately result in cost
savings and improve
operational efficiency

Lohmer and Lasch (2020);
Saberi et al. (2019); Zhu
et al. (2022

Supportive government
policies (SHR6)

Government policies can help
to encourage the adoption of
BCT

Zhou et al. (2020); Nath
et al. (2022)

Technology-
oriented
enablers (TOE)

Smart contracts (TOE1) A smart contract is a self-
executing agreement between
the parties that helps to enhance
security and transparency

Zafar et al. (2021); Orji
et al. (2020)

Advanced
communication
technology (TOE2)

In modern manufacturing,
machine-to-machine
communication can be
achieved using servers,
connecting cables, sensors, etc

O. Jimoh et al. (2019); Xie
et al. (2019)

Technological maturity
(TOE3)

It represents the extent to
which the technology has been
used since its initial
application. Mature technology
ensures increased stability and
reliability, making BCT more
adaptable

Choi et al. (2020); Huang
et al. (2022)

(continued)
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and payment processes can be automated using Blockchain smart contracts. BCT improves
trust, payment practices and the ability to trade digitized assets on decentralized
marketplaces (Teisserenc, 2021).

Blockchain-enabled Emission Trading Schemes (ETS) and an innovative “emission link”
system in the fashion apparel manufacturing industry can reduce carbon emissions for all
stages of cloth production by exposing them to the public and adding emission-reducing
features (B. Fu et al., 2018). In a case study based on the fashion industry, the author
compared traditional fashion supply chains (without blockchain support) to blockchain-
supported supply chains and discovered that better information transparency and traceability
of raw materials and sustainable products in the latter case helps to improve sustainability
practices while also motivating customers to buy sustainable products (Guo et al., 2023). The
author observed four major abilities of blockchain that support sustainability:

(1) tracking ability reduces product rework;

(2) helps to trace the actual footprints of products;

(3) Enables recycling; and

(4) Reduces fraud and improves the efficiency of trading schemes (Saberi et al., 2019).

The authors Sahebi et al. (2020) combined fuzzy Delphi and the Best Worst Method to
identify nine barriers and calculate their weights. Furthermore, one of the most significant
barriers to BCT adoption has been identified as a lack of knowledge/employee training.
Skilled employees can increase profits for the industry and aid in the successful
implementation of BCT. Disintermediation is regarded as one of the most promising aspects
of Blockchain. It facilitates peer-to-peer trading of services and goods, minimizing the
interference of third parties or middlemen, thus reducing transaction costs and time, as well
as business waste reductions in supply chains (Lohmer and Lasch, 2020, Saberi et al., 2019).
For the successful implementation of BCT, the government should provide regulatory
support, a legal framework and governance guidelines. Government support, initiatives and
policies are key factors for the rapid adoption of BCT (Nath et al., 2022; Zhou et al., 2020).

Table 1. Continued

Major criteria
enablers Sub-criteria enablers Description References

Interoperability (TOE4) It allows blockchain networks
to communicate in terms of
data and values with other
networks

Ghode et al. (2020);
Espinoza Pérez et al.
(2022)

Service-oriented
architecture (TOE5)

Service-oriented architecture
allows applications to
communicate and exchange
data through loosely coupled
and reusable services

Mendhurwar and Mishra
(2023)

Product customization
(TOE6)

It refers to the capacity to use
blockchain-based solutions to
customize and personalize
goods and services

Dutta et al. (2020); Lupi
et al. (2023)

Source: Authors’ own creation
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Lallas et al. (2019) proposed a blockchain-supported cloud framework for real-time
machine condition monitoring (MCM) and fault prediction (preventive maintenance), where
computationally demanding tasks exist, as BCT has emerged as the most trusted technology
for safely processing data. BCT allows customers to inspect the quality of products and
promotes quality assurance practices. It also improves the performance of other techniques in
fault prediction, diagnosis and decision-making (Khanfar et al., 2021). BCT is based on
distributed ledger technology and operates on an open peer-to-peer network. It promotes
transparency and was initially used in the finance industry to replace manual transaction
authentications. BCT improves traceability, data immutability and security, thereby ensuring
transaction transparency (Javaid et al., 2021; Ko et al., 2018). BCTcan improve supply chain
efficiency and customer satisfaction by providing high-quality products (Choi et al., 2020).
The authors discussed the benefits of BCT, which can improve product quality, information
quality and delivery reliability, resulting in profitability for the organization (Karamchandani
et al., 2021). BCT improves reliability due to its unique features such as immutability,
disintermediation and data provenance (Ghode et al., 2020). Real-time capability refers to a
data processing system that includes hardware and software to collect and analyze data and
perform real-time functions at a specific time. BCT can help achieve real-time capability
(Mendhurwar and Mishra, 2023; Shah et al., 2022). Du et al. (2021) discussed the use of
smart contracts in smart grids to reduce processing time, and errors and improve reliability
and timeliness through a traceability system. BCT properties such as data immutability, time
stamping and distributed records can provide dependable services and timeliness
(Karamchandani et al., 2021).

Smart contracts are BCT features that can be programmed on the public platform. It has
control over digital assets and authority to formulate customers’ rights, which simplifies the
process and reduces third-party costs (Orji et al., 2020). Zafar et al. (2021) presented a case
study from Nigeria and explained the importance of BCT adoption in developing countries.
The authors observed that advanced information and communication technology plays an
important role in increasing BCT awareness (Jimoh et al., 2019). In the implementation of
smart cities, information and communication technology is extremely important. The
integration of BCT and communication technology can help to promote the development of
smart cities (Xie et al., 2019). Technological maturity is the extent to which a technology has
been used since its initial application. Choi et al. (2020) explain that complex technology
faces resistance during implementation and suggest that advances in technological maturity
can reduce resistance to the adoption of new technologies. Technological maturity is
important in BCT implementation in circular supply chain management (CSCM), and it
includes evolving technologies, technical flexibility infrastructure, etc. (Huang et al., 2022).

Interoperability refers to a system or software’s ability to exchange and use information.
BCT improves data interoperability. Thus, companies can easily share information with
vendors, suppliers and manufacturers (Ghode et al., 2020). In their study, the author
discusses integrating various devices from different manufacturers on the shop floor to allow
for communication and information exchange between them. Blockchain assists in recording
this information in a ledger that is accessible to other users in the network, of course, by
developing new appropriate protocols (Espinoza Pérez et al., 2022). With the increased use
of technologies such as IoT in manufacturing and Industry 4.0, large data transactions and
exchanges are taking place, resulting in a service composition problem.

The author introduced a Blockchain-based service composition model (Block-SC) based
on the service orientation approach (SOA). SOA has the potential to break down the software
system into smaller, interoperable services (Aghamohammadzadeh and Fatahi Valilai, 2020).
According to one study, blockchain can improve mass customization while also increasing
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organizational profitability. BCT transforms the manufacturing environment through
distributed systems and facilitates the incorporation of agile manufacturing practices,
resulting in product customization (Dutta et al., 2020). Decentralized systems like BCT
allow producers to exercise control over demand selection, which eventually results in
resource customization and specialization (Lupi et al., 2023).

2.3 Blockchain technology performance metrics
Performance metrics are used to measure the performance of a system or technology.
Performance metrics are measures that quantify the productivity, efficiency, current status
and success of an existing or emerging process or system (Pansare and Yadav, 2022).
Customer complaint rate can be used as a perforce metric for BCT adoption in the
manufacturing industry. BCT can improve product quality, and supplier performance and
promote quality assurance practices, resulting in fewer customer complaints. Khanfar et al.
(2021) identified an increase in data hacking cases in the health-care sector, suggesting that
implementing BCT-based health-care models can reduce data hacking complaints (Jain
et al., 2020). Data storage capacity is also an important metric in terms of BCT adoption, as
large amounts of data are collected and stored in each node regularly, necessitating more
storage space (Tan et al., 2020). BCT’s distributed network effectively addresses issues such
as server breakdown, cyber-attacks on a centralized server and network failure. An attack on
a single server does not affect the network’s other connected servers. Thus, the number of
breakdowns is an important metric for evaluating BCT performance (Jimoh et al., 2019).
Lead time can be reduced by using BCT’s robust traceability system and real-time data
sharing, which allows for inventory optimization and effective resource utilization (Ada
et al., 2021; Aslam et al., 2021). BCT can improve productivity by scheduling production
and managing human resources. BCT can also be used to track the product’s life cycle, from
rawmaterials to finished product (Balon et al., 2022).

Energy utilization can be monitored by distributed energy systems, which enable
transparency, lower operation costs and tamperproof systems (Gerardi et al., 2023; Wang and
Su, 2020). By removing intermediaries from the system, transaction costs can be reduced and
manufacturing firms can use BCT to create new network platforms (Ko et al., 2018).
Distributed ledger technology (DLT), such as blockchain, builds trust among network users
by providing transparency, resulting in lower transaction costs (Roeck et al., 2020). Kaushal
et al. (2021) observed slow transaction speeds in blockchain networks and proposed
improving the consensus algorithm and proof of work mechanism to improve them.

Staff training is viewed as an important success factor in BCT adoption. Mubarik et al.
(2020) and Zhou et al. (2020) suggested that local governments design and organize training
programs to meet the technical skill requirements for advanced emerging technologies.
Direct communication among participants reduces transaction costs, time and business
waste. BCT helps to reduce pollution and waste, and the traceability of data related to
utilization and resources assists manufacturers in reducing production waste (Khanfar et al.,
2021; Saberi et al., 2019). BCT assists in tracking the information of each component from
its manufacturer and supplier, as well as in the maintenance, repair and overhaul of the parts
or components (Asuncion et al., 2021). The combined use of BCTand Artificial Intelligence,
Internet of Things, Radio Frequency Identification (RFID) and Near-Field Communication
(NFC) can help increase traceability in the food supply chain (Kamilaris et al., 2019). BCT
quickly identifies defective products, locates the source and removes the affected products,
saving money and time in recalling the entire production line (Kshetri, 2018). According to
Yang et al. (2019), micro-enterprises can use BCT to expand their market, provide quality
services to customers and increase sales. Better service quality can help Micro and small
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enterprises (MSEs) increase sales. BCT’s transparency and security features result in a
flexible production system and a wide range of products that can be manufactured (Shoaib
et al., 2020). BCT has the potential to reduce labor costs while increasing an organization’s
profits. A brief description of the 17 identified performance metrics is given in Table 2.

3. Research methodology
The current section discusses the research journey. Initially, the research articles were
retrieved from the Scopus database, and the hybrid Pythagorean fuzzy AHP - Co-Co-So
technique was presented to the expert panel for feedback. The Pythagorean fuzzy AHP was
used to calculate the major and sub-criteria weights, and the performance metrics were
ranked using the Co-Co-So approach. Finally, a sensitivity analysis was performed, and a list
of the study’s implications was presented. The sensitivity study was designed to assess the
robustness of the developed framework. The research methodology is depicted in Figure 1.

4. Case analysis
4.1 Data collection
The primary goal of this research was to create a framework to help practitioners and
researchers identify BCT adoption enablers in manufacturing industries. Representatives
from 15 different manufacturing companies were contacted, and the idea was thoroughly
explained to them. Eleven representatives agreed to participate in the process, with nine from
the industry and two from academia. However, because BCT implementation is still in its
early stages, selecting representatives from various departments such as production,
machining automation and manufacturing was difficult.

Following a lengthy discussion with the experts, it was decided to form an expert panel
made up of eleven members from various industries to ensure the successful implementation
of the proposed framework development procedure. Each expert was highly qualified and
experienced in their field (see Appendix 3). The Academics are university professors and
hold Ph.D. with research experience in the field of supply chain and manufacturing. Whereas
the industry experts are in leadership positions and participate in the project work associated
with manufacturing, and supply chain with blockchain. Following several discussions with
the expert panel, experts were tasked with creating a pairwise comparison of major and sub-
criteria practices. Experts were also consulted for the first pairwise comparison of the Co-Co-
So technique. The weight computation and prioritization process was completed, the results
were presented to the expert panel for discussion, and minor changes were made based on the
panel’s recommendations.

4.2 Development of framework
The expert panel advised categorizing the factors into four major criteria, as shown in Figure 1.
The proposed framework includes four levels: Level 1 represents the built framework’s
objective, which is to investigate the impact of various factors on BCT adoption in
manufacturing industries. Level 2 consists of four major criteria:

(1) Data security enablers.

(2) Quality-related enablers.

(3) Enablers related to sustainability and human resources, as well as

(4) Enablers focused on technology.

Level 2 outlines the major criteria, with a focus on organizing the selected enablers according
to the expert panel’s recommendations. Each major criterion denotes a specific area of
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Table 2. Performance metrics of BCT

Code Performance metrics Description References

PM1 Customer complaint
rate

This metric is useful to measure customer satisfaction
and its effect on the technology implementation

Khanfar et al.
(2021)

PM2 Data hacking
complaints per year

Monitoring of data hacking complaints is essential to
check the reliability of the system

Jain et al. (2020)

PM3 Data storage capacity
in systems

A large amount of data is to be handled and stored in
the systems with an increase in the size of the
blockchain

Tan et al. (2020)

PM4 Number of
breakdowns per
month

The breakdown is a failure in the functioning of a
system or a process and can be considered an
important metric to assess performance

O. Jimoh et al.
(2019)

PM5 Lead time It represents the time required from the start of a
process to the completion of the product. In BCT
adoption in manufacturing it is associated with the
supplier's lead time

Ada et al. (2021);
Aslam et al.
(2021)

PM6 Productivity Productivity is the measure of the efficiency of the
process or a system. Productivity can be improved with
good traceability and traceability of the supply chain

Balon et al. (2022)

PM7 Energy utilization rate It is an important metric as energy savings and
sustainability are the major considerations in
manufacturing industries

Wang and Su
(2020)

PM8 Transaction cost It represents the network cost, data mining cost, data
storage cost, administrative cost and overhead costs in
carrying out the transaction

Roeck et al.
(2020); Ko et al.
(2018)

PM9 Transaction speed It is the measure of number of transactions processed
by a blockchain network in a given time. It is
represented as transaction per second

Kaushal et al.
(2021)

PM10 Number of training
sessions conducted for
employees

It indicates education to the employees through
training sessions which may include basics of BCT,
simulation workshops, information about smart
contracts and consensus algorithms

Mubarik et al.
(2020); Zhou et al.
(2020)

PM11 Waste reduction BCT can keep records of waste generation and waste
disposal supporting recycling and remanufacturing.
Leading to waste reduction

Khanfar et al.
(2021); Saberi
et al. (2019

PM12 Equipment repairs and
maintenance

It represents the condition and the movement of the
equipment that can be tracked efficiently by using
BCT features

Asuncion et al.
(2021)

PM13 Number of advanced
technologies available
for BCT

Smart contracts, consensus algorithms, hybrid
blockchains and integration of advanced technologies
like AI, and IoTwith BCT can improve the efficiency
of the system

Kamilaris et al.
(2019)

PM14 Percentage of
defective products

It is the measure of the quality of the products
produced by the manufacturing process

Kshetri (2018)

PM15 Sales growth It is a measure of an increase in revenue generation
and growth of business

M. H. Yang et al.
(2019)

PM16 Number of products
being manufactured

This metric indicates the variety of products that can
be manufactured and the flexibility of the production
system

Shoaib et al.
(2020)

PM17 Total manpower
required

BCT implementation helps in reducing human
intervention and manpower can be used for other
productive tasks that make the systemmore productive

Y. Fu and Zhu
(2019)

Source:Authors’ own creation
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application. This can aid researchers in implementing their preferred practices. Level 3
displays the sub-criteria for each major criterion. This level is one of the most important in
the framework because it includes several factors that can help with the successful
implementation of BCT in the manufacturing industry. Level 4 includes performance
matrices that can assist researchers and practitioners in determining what improvements are
required and how effective the enables are in comparison to the corresponding major criteria.
This can help practitioners identify areas for improvement and assess the effectiveness of
adopted practices in the actual system. The framework depicted in Figure 2 shows how it can
be gradually implemented within the company and evaluated using a set of performance
metrics.

4.3 Analysis of framework
The hybrid Pythagorean fuzzy AHP-Co-Co-So method was used to calculate the weights of
selected BCT enablers and rank performance metrics. The entire process is discussed in
detail below.

4.3.1 Application of pythagorean fuzzy analytical hierarchy process technique. The
AHP process is inaccurate and inconsistent in ranking (Pansare and Yadav, 2022).
Pythagorean fuzzy sets can handle uncertainty and vagueness in expert-provided data,
whereas intuitionistic fuzzy sets cannot. In Pythagorean fuzzy sets, the sum of membership
and non-membership degrees can be greater than one, but the sum of their squares cannot be.
Pythagorean fuzzy sets allow decision-makers to express their views on the problem’s
vagueness and impreciseness (Shete et al., 2020). The following section explains the steps
involved in the Pythagorean fuzzy AHP Technique (Lahane and Kant, 2021).

Retrieve research articles from Scopus database & Google Scholar to conduct an exhaustive
literature review

Include the peer-reviewed journals of renowned publishers (ScienceDirect, Taylor and Francis,
Emerald insight, Springerlink, John Wiley, Inderscience, IEEE) & renowned conferences

Explore the factors and  suitable MCDM techniques & Prepare decision panel to finalize
major and sub-criteria.

Present all selected practices to expert panel , collect their feedback & obtain 
comparison input required for MCDM technique through deision panel.

Compute the weights of the majaor criteria and sub criteria through pythagorean
fuzzy AHP approach

Prioritize the performance metrics and compute the index score using CoCoSo 
method.Conduct sensitivity analysis to check the robustness of the framework

Conclude the result and summarize the research findings,explain implications of the study
along with the future scope . 7

1

2

3

5

4

6

Source: Authors’ own creation

Figure 1. Researchmethodology
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4.3.2 Procedure of pythagorean fuzzy analytical hierarchy process technique
Step 1: Form a pairwise comparison matrix A = (aik)m x n with reference to the responses
taken from the expert panel with the help of linguistic variables provided in Appendix 1. The
sample pairwise comparison matrix prepared is shown in Table 3.

Step 2: Calculate the differences matrix D = (dik)m x n between lower and upper values of
the membership and non-membership functions:

dikL = μ2ikL − ϑ2ikU (1)

dikU = μ2ikU − ϑ2ikL (2)

Framework to identify key enablers and their impact on Blockchain Technology adoption in Manufacturing
Industries

Data Security Enablers
(DSE)

Quality-Related
Enablers (QRE)

Sustainability &HR
Related Enablers (SHR)

Technology Oriented
Enablers (TOE)

� Customer Complaint Rate (PM1) Number of Training Sessions Conducted for Employees
(PM10)

� Data Hacking Complaints per Year (PM2) Waste Reduction (PM11)
� Data Storage Capacity in Systems (PM3) Equipment Repairs & Maintenance (PM12)
� Number of Breakdowns Per Month (PM4) Number of Advanced Technologies Available for BCT (PM13)
� Lead Time (PM5) Percentage of Defective Products (PM14)
� Productivity (PM6) Sales Growth (PM15)
� Energy Utilization Rate (PM7) No of Products Can Be Manufactured (PM16)
� Transaction Cost (PM8) Total manpower required (PM17)
� Transaction Speed (PM9)

� Energy Tracking (SHR1)
� Sustainability Practices ((SHR2)
� Decentralized Marketplace

(SHR3)
� Employee Expertise and Training 

(SHR4)
� Disintermediation (SHR5)
� Supportive Government
� Policies (SHR6)

� Smart Contracts (TOE1)
� Advanced Communication

Technology (TOE2)
� Technological Maturity (TOE3)
� Interoperability (TOE4)
� Service-Oriented Architecture

(TOE5)
� Product Customization (TOE6)

� Prediction & Preventive
Maintenance (QRE1)

� Quality Assurance Activities
(QRE2)

� Transaction Transparency (QRE3)
� Customer Satisfaction (QRE4)
� Reliability (QRE5)
� Real-Time Capability (QRE6)
� Timeliness (QRE7)

� Data Provenance & Immutability 
(DSE1)

� Traceability (DSE2)
� Prediction Capabilities (DSE3)
� Clear Ownership (DSE4)
� Secure Storage and Transaction

(DSE5)
� Data Virtualization (DSE6)
� Operations Performance (DSE7)

Level-1

Level-2

Level-3

Level-4

Source: Authors’ own creation

Figure 2. Framework to identify key factors and their impact on BCT in manufacturing industries

Table 3. Sample pairwise comparison matrix for data security enablers

Criteria DSE1 DSE2 DSE3 DSE4 DSE5 DSE6 DSE7

DSE1 EE AAI AAI BAI AAI AAI AAI
DSE2 AAI EE AAI BAI AI AAI AAI
DSE3 BAI BAI EE BAI BAI BAI AAI
DSE4 AAI AAI BAI EE AAI BAI BAI
DSE5 AAI CHI AI AAI EE BAI LI
DSE6 BAI AI AAI BAI BAI EE AAI
DSE7 AAI AI AAI BAI LI BAI EE

Source:Authors’ own creation
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Step 3:Calculate the Interval multiplicative matrix S = (sik)m x n

sikL =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000dikL

p
(3)

sikU =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000dikU

p
(4)

Step 4:Compute determinacy value τ = (τik)m x n of the aik using equation (5):

τik = 1− μ2ikU − μ2ikL

� �
− ϑ2ikU − ϑ2ikL

� �
(5)

Step 5:Compute the matrix of weights T = (tik)m x m before normalization by multiplying the
determinacy degrees with S = (sik)m x m matrix:

tik =
sikL + sikU

2

� �
τik (6)

Step 6: Evaluate the normalized priority weight, wi:

wi =
∑m

k= 1tik
∑m

i = 1∑
m
k¼1tik

(7)

Hence, the obtained global weights are shown in Table 4.
4.3.3 Application of pythagorean fuzzy Co-Co-So technique. Pythagorean fuzzy Co-

Co-So approach is an innovative and effective approach to deal with MCDM problems.
It was first introduced by (Yazdani et al., 2019). This method is a combination of two
models: exponentially weighted product (EWP) and simple additive weighting (SAW)
model (Pansare and Yadav, 2022). Integration of Pythagorean fuzzy sets helps to
efficiently deal with uncertainty issues and provide the best alternative (Lahane and
Kant, 2021). The Pythagorean fuzzy Co-Co-So steps are as follows (Lahane and Kant,
2021).

Step 1: Frame the decision matrix D = (Dij)m x n (i = 1, 2…m; j = 1, 2… n) with the help
of expert’s opinion by assigning the linguistic scale of Pythagorean fuzzy Co-Co-So is given
in Appendix 2. The sample pairwise comparison for selected performance matrix is shown in
Appendix 4.

Step 2:Convert the linguistic decision matrix into the Pythagorean fuzzy decision matrix:
P ¼ ðPijÞmxn ði ¼ 1; 2…m; j¼ 1; 2…nÞ (8)

Step 3: Calculate the score function R = (rij)mxn of each Pythagorean fuzzy number (PFN) pij
= (µij, νij):

rij ¼ µ2ij − ν2ij − lnð1+π2ijÞ (9)

Step 4:Convert the score function matrix R = (rij)mxn into an orthonormal Pythagorean fuzzy
matrix R = (rij)mxn:

rij − r−j
r+j − r−j

; if j∈B

r+j − rij
r+j − r−j

; if j∈C

8>>><
>>>:

(10)

where, r−j =mini rij, and r
+
j =maxi rij
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Step 5:Calculate the total of the weighted comparability sequence for each alternative:

si = ∑
n

j = 1
wj∗r

0
ij (11)

Step 6: Calculate the whole of the power weight of comparability sequences for each
alternative:

Pi= ∑
n

j = 1
r
0
ij

� �wj

(12)

Step 7:Determine the relative weight of the alternatives using aggregation score strategies:

Kia =
Pi + Si

Σm
i¼1 Pi + Sið Þ (13)

Kib =
Si

min
i

Si
+

Pi

min
i

Pi
(14)

Table 4. Global weights of major and Sub-criteria enablers

Major criteria

Major
criteria
weights Sub-criteria

Sub-criteria
local
weights

Global
weights

Data security
enablers (DSE)

0.3881 Data Provenance and Immutability (DSE1) 0.2083 0.0808
Traceability (DSE2) 0.1525 0.0592
Prediction Capabilities (DSE3) 0.0760 0.0295
Clear Ownership (DSE4) 0.1120 0.0435
Secure Storage and Transaction (DSE5) 0.2578 0.1000
Data Virtualization (DSE6) 0.1044 0.0405
Operations Performance (DSE7) 0.0891 0.0346

Quality-related
enablers (QRE)

0.1441 Prediction And Preventive Maintenance (QRE1) 0.1159 0.0164
Quality Assurance Activities (QRE2) 0.2954 0.0417
Transaction Transparency (QRE3) 0.1305 0.0184
Customer Satisfaction (QRE4) 0.1066 0.0150
Reliability (QRE5) 0.1843 0.0260
Real-Time Capability (QRE6) 0.1005 0.0142
Timeliness (QRE7) 0.0668 0.0094

Sustainability &
HR related
enablers (SHR)

0.1848 Energy Tracking (SHR1) 0.2612 0.0483
Sustainability Practices (SHR2) 0.2272 0.0420
Decentralized Marketplace (SHR3) 0.1285 0.0238
Employee Expertise and Training (SHR4) 0.1145 0.0212
Disintermediation (SHR5) 0.0913 0.0169
Supportive Government Policies (SHR6) 0.1772 0.0327

Technology
oriented
enablers (TOE)

0.2860 Smart Contracts (TOE1) 0.2333 0.0667
Advanced Communication Technology (TOE2) 0.1340 0.0383
Technological Maturity (TOE3) 0.2875 0.0822
Interoperability (TOE4) 0.1568 0.0449
Service Oriented Architecture (TOE5) 0.1086 0.0311
Product Customization (TOE6) 0.0797 0.0228

Source:Authors’ own creation
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Kic =
λSi + 1− λð ÞPi

λmax
i

Si + 1− λð Þmax
i

Pi
0≤ λ≤ 1; (15)

where,
• Kia = Arithmetic mean of sums of weighted sum method (WSM) and weighted

product model (WPM) scores.
• Kib = Denote a sum of relative scores of WSM andWPM compared to the best.
• Kic = Balanced compromise of WSM andWPMmodel scores.

Step 8:Determine the assessment valueKi:

Ki =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KiaKibKic

3
p

+
Kia +Kib +Kic

3
(16)

Step 9:Rank the alternative based on the decreasing value ofKi (i = 1, 2…m)
The steps to be followed during Pythagorean fuzzy AHP and Pythagorean fuzzy Co-Co-

So method are described in Section 4.3.2 and 4.3.3 respectively. These steps are also
represented using a flowchart in Figure 3. These steps are followed to obtain the ranking of
the selected performance metrics as shown in Table 5.

4.3.4 Sensitivity analysis It is essential to check the behavior of the framework under
variable conditions (Lahane and Kant, 2021). Hence, a sensitivity analysis is performed to
ensure that the framework is robust. The ranking is accomplished by varying the weights

Step I: Form a pairwise comparison matrix from the responses given

by the expert panel with the help of linguistic variables of PFAHP

Step 2: Calculate the differences matrix between the lower and

upper values of the membership and non-membership functions.

Step 3: Calculate the Interval multiplicative matrix

Step 4: Compute determinacy value

Step 5: Compute the matrix of weights before normalization by

multiplying the determinacy degrees with the Interval 

multiplicative matrix

Step 6: Evaluate the normalized priority weight

Step 7: Obtain the global weights

Pythagorean Fuzzy Combined Compromised 
Solution (PF-Co-Co-So)

Step I: Form a decision matrix from the responses given by the

expert panel with the help of linguistic variables of PF-Co-Co-So

Step 2: Convert the linguistic decision matrix into the Pythagorean

fuzzy decision matrix

Step 3: Calculate the score function of each Pythagorean Fuzzy

Number (PFN)

Step 4: Convert the score function matrix into an orthonormal 

Pythagorean fuzzy matrix

Step 5: Calculate the total of the weighted comparability sequence 

for each alternative

Step 6: Calculate the whole of the power weight of comparability

sequences for each alternative

Step 7: a) Determine the relative weight of the alternatives using

aggregation score strategies   b) Determine the assessment value

c) Rank the alternative based on the decreasing assessment value

Pythagorean Fuzzy Analytical Hierarchy Process
(PF-AHP)

To compute the weights of enablers and prioritize the performance metrics of BCT adoption

Source: Authors’ own creation

Figure 3. Flow chart for steps in PFAHP and PF Co-Co-So
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from 2% to 25% and 17 trials were conducted. Figure 4 shows that there are no significant
changes in the ranking of performance metrics.

Table 5 shows that the ranking was determined based on Ki values; thus, the weights were
varied as previously discussed, and the variation in Ki values and ranking was observed, as
shown in Figure 4. Figure 4 shows that there are very few intersecting lines observed during
the experiments, implying that there are no significant changes in the ranking of performance
metrics. This demonstrates that variations in enabler weights have little impact on the
ranking. As a result, the obtained rankings are robust.

5. Results and discussion
The current section discusses the findings of the study and its implications in detail.

5.1 Study findings
The current study seeks to prioritize performance metrics for BCTadoption in manufacturing
industries. Several researchers in this field have also attempted to develop frameworks for a
variety of applications. This includes the framework developed by Patel et al. (2024), whose
authors attempted to develop a framework for integrating BCT and artificial intelligence in
manufacturing organizations. Furthermore, Zheng et al. (2024) proposed a framework for
data sharing in manufacturing organizations to support collaborative supply chains. Such
enablers made significant contributions to the study’s selected domain and attempted to
improve BCT adoption and performance in manufacturing organizations. However, unlike
the current study, none of the previous studies attempted to identify the enablers of BCT at a
glance or provide performance metrics for the same. In addition, the literature did not include
the computation of the relative significance of the selected enablers or the prioritization of
performance metrics. As a result, the focus of this article is on developing a framework that
can help practitioners adopt BCT and evaluate its performance. The developed framework is

Table 5. Ranking obtained using pythagorean fuzzy Co-Co-So method

Code Performance metrics Kia Kib Kic Ki Rank

PM1 Customer complaint rate 0.0214 2.0000 0.3175 1.0183 17
PM2 Data hacking complaints per Year 0.0674 19.3652 1.0000 7.9039 1
PM3 Data storage capacity in systems 0.0673 18.9540 0.9981 7.7570 2
PM4 Number of breakdowns per Month 0.0621 11.0519 0.9206 4.8695 11
PM5 Lead time 0.0592 9.6588 0.8775 4.3263 12
PM6 Productivity 0.0534 7.3535 0.7924 3.4108 15
PM7 Energy utilization rate 0.0642 16.7253 0.9528 6.9219 5
PM8 Transaction cost 0.0628 12.5790 0.9321 5.4278 9
PM9 Transaction speed 0.0664 16.3735 0.9850 6.8314 4
PM10 Number of training sessions conducted for employees 0.0550 7.3192 0.8161 3.4203 14
PM11 Waste reduction 0.0658 14.4049 0.9766 6.1239 7
PM12 Equipment repairs and maintenance 0.0659 14.4930 0.9767 6.1553 6
PM13 Number of advanced technologies available for BCT 0.0666 17.0956 0.9884 7.0906 3
PM14 Percentage of defective products 0.0310 4.2072 0.4591 1.9568 16
PM15 Sales growth 0.0656 13.7806 0.9728 5.8977 8
PM16 Number of products can be manufactured 0.0612 9.1364 0.9080 4.1664 13
PM17 Total manpower required 0.0646 11.2313 0.9584 4.9708 10

Source:Authors’ own creation
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unique in that it may assist in preparing systematic BCTadoption plans as well as evaluating
the effectiveness of the same. The obtained results are discussed below.

Among the major criteria enablers, DSE received the highest weight, indicating that DSE
enablers are extremely important and beneficial to BCT implementation. In a study on
blockchain enablers, Valle and Oliver (2020) mention BCTas a sustainable innovation rather
than a disruptive technology. The authors identify five enablers, with the first, “Access
enabler,” focusing on identity and digital signatures, which are an important part of data
security and may boost BCT adoption in industries. Iqbal et al. (2020) and Yousefi and
Mohamadpour Tosarkani (2022) identified enablers such as immutability and data security as
important for BCT adoption. TOE appears second, emphasizing the importance of the
technologies required for BCT. Valle and Oliver (2020) discussed the importance of
interoperability, technological maturity and other factors in promoting BCT adoption in
industries. SHR ranked third, followed by energy tracking (SHR1). Shoaib et al. (2020)
acknowledged that blockchain promotes sustainability by lowering energy consumption and
carbon emissions through precise tracking and control. QRE was ranked fourth, with sub-
criteria enablers such as maintenance, quality assurance, customer satisfaction, reliability
and timeliness. According to Shoaib et al. (2020), BCT ensures quality fairness, improves
process quality and guarantees customer satisfaction.

Secure storage and transactions received the most weight globally. According to Gupta
et al. (2021), BCT is a shared ledger that allows for unchangeable data storage through
approved and verified transactions. Technological maturity, Data provenance and
immutability were ranked second and third, respectively. According to Huang et al. (2022),
AHP results show that technological success factors such as technological maturity,
feasibility and technical capability play important roles in BCTadoption. Gupta et al. (2021)
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Figure 4. Sensitivity analysis of Ki values
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state that BCT enablers such as transparency and visibility, integrity and validation can help
achieve data provenance and immutability. Smart contracts and traceability ranked fourth
and fifth, respectively. Valle and Oliver (2020) described smart contracts as a fundamental
asset of BCT in industry, stating that because they are deterministic, they always produce the
same output for the same input. Kamble et al. (2020) identified traceability as one of the most
important enablers in the agricultural supply chain because it allows for auditability,
immutability and provenance.

Further the performance metrics were ranked by using the Pythagorean fuzzy Co-Co-So
method, presented in descending order as shown,

PM2>PM3>PM13>PM7>PM9>PM12>PM11>PM15>PM8>PM17>PM4>PM5>PM16
>PM10>PM6>PM14>PM1.

Data hacking complaints per year (PM2) ranked first, with data storage capacity in
systems (PM3) coming in second. The security of data from hacking is a major concern with
advanced Industry 4.0 technologies such as Industrial Internet of Things (IIoT). According to
Iqbal et al. (2020), Blockchain is made up of many nodes that store information, and the
nodes are interconnected in such a way that data hacking or maltreatment would result in
complete failure because data is not directly stored at one location. Also, due to the
decentralized nature of data storage, a large amount of storage space is required.

The number of advanced technologies available for BCT (PM13) and energy
utilization rate (PM7) were ranked third and fourth respectively. IIOT, AI and Machine
Learning (ML) can be integrated with BCT to make the system tamper-proof. Smart
contracts, consensus algorithms and hybrid blockchain are some of the technologies used
to make blockchain more trustworthy. Iqbal et al. (2020) stated that combining IIOT and
blockchain can help with data security concerns in cloud storage. The author also
mentioned the need for an advanced power (energy) setup. There is always a need for
higher-level software and advanced power setup, which is lacking in many industries.
According to Karaarslan and Konacaklı (2020), mining operations in blockchain require
very high energy input. Replacing conventional proof of work (PoW) blockchain with a
Proof of Stake (POS) consensus protocol can reduce energy consumption. Furthermore,
Transaction Speed (PM9) and Equipment repairs and maintenance (PM12) are ranked
fifth and sixth, respectively. High transaction speed is regarded as desirable for the
efficient and effective processing of transactions. According to Habib et al. (2022),
shifting blockchain systems to an accelerating hardware system is required to improve
transaction speed. This allows for the distribution of load across multiple parts, resulting
in increased transaction speed and accuracy.

BCT can handle equipment maintenance and repair efficiently. Because transaction
records are immutable, BCT allows for tracking of parts delivery and installation.
Maintenance and removal, as well as the identification of counterfeit parts, all result in lower
maintenance costs (Hasan et al., 2020). Practitioners can make decisions and evaluate
blockchain systems using a set of performance metrics and their ranking.

5.2 Implications of the study
The current study demonstrates the application of hybrid Pythagorean fuzzy AHP and
Pythagorean fuzzy Co-Co-So techniques that can be also applied in similar domains of the
study. Hence, the study results in the theoretical enrichment of the selected domain.
According to the obtained global weights, the enabler Secure Storage and Transaction
(DSE5) has obtained the highest weight which means the practitioners must focus on these
enablers so that the performance metrics like Data Hacking Complaints per Year will be
improved. Similarly, the performance metric Data Hacking Complaints per Year has the
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topmost ranking indicating the importance of data security in manufacturing organizations.
Hence, the practitioners must focus on the enablers related to data security like Secure
Storage and Transaction (DSE5), Advanced Communication Technology (TOE2), etc. This
can assist in improving the performance of the manufacturing organization and the same can
be evaluated using prioritized performance metrics. In this way, the developed framework
can be used by practitioners to prepare long-term strategic improvement plans for their
organizations. This may also result in the increased adoption of BCT technology in the
manufacturing organization. The practitioners must also try to improve the data storage
capacity and use of advanced technologies in the organization. For this, they may refer to the
enablers like Secure Storage and Transaction (DSE5), Advanced Communication
Technology (TOE2), Technological Maturity (TOE3), etc. and this can assist the
improvement of the relevant performance metrics like Data Storage Capacity in Systems,
Number of Advanced Technologies Available for BCT, etc. and the same is reflected in the
results of prioritization. The developed framework also considers factors such as technology,
data security, economy, sustainability and environmental benefits. This can motivate
practitioners to implement sustainable practices along with BCT in manufacturing
organizations.

6. Conclusion and future scope
This current research provides an innovative framework for BCT adoption in manufacturing
industries. To fulfill the research objectives discussed in the first section, 26 enablers
categorized under 4 major criteria and 17 performance metrics were identified, followed by
the computation of weights using the Pythagorean fuzzy AHP method and prioritization of
performance metrics using the Pythagorean fuzzy Co-Co-So technique. The thoughtfully
selected performance metrics reflect the quantifiable measures of the performance of BCT
over time from the adoption point of view. This resulted in the development of a framework
that can help in BCT adoption in manufacturing industries. Results show that the top five
favorable factors in BCT adoption were secure storage and transaction, technological
maturity, data provenance and immutability, smart contracts and traceability. The above
factors belong to data security and technology-oriented enablers. This suggests that the
decentralized nature of Blockchain leads to an advanced level of data security and supporting
technology like smart contracts, consensus algorithms and collaboration with advanced
technologies like AI, ML, IoT, etc. makes Blockchain a trustworthy technology.
Furthermore, in the ranking of performance metrics, the top 5 metrics were data hacking
complaints per year, data storage capacity in systems, number of advanced technologies
available for BCT, energy utilization rate and transaction speed. Considering the transaction
cost metric, it stood ninth in the ranking. Research scholars and industrial practitioners may
set their strategic goals more efficiently with the help of this prioritization. Moreover, BCT
implementation in manufacturing industries can reduce manufacturing costs through
sustainability practices, waste reduction, timely maintenance and repair, improving the
traceability in the supply chain, and removing the middleman from the transaction, thus
providing better communication in the network and better-quality products.

Nevertheless, the existing research may have a few limitations that may be attempted by
researchers in the near future. The framework was developed using the MCDM technique
and expert opinions; however, these opinions are arbitrary and may have an impact on the
results because the panel includes experts from specific geographical locations and areas of
expertise. Furthermore, the developed framework may not be generalizable to industries
other than manufacturing, and operational scales may limit its applicability. More
progressiveMCDM techniques can also be used for the same and results can be compared. In
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spite of all the benefits offered by BCT, a huge percentage of organizations have not
implemented it. This shows that there are some barriers to the adoption and identifying the
barriers to the BCTadoption can be done in the future.
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Appendix 1

Appendix 2

Table A1. Linguistic scale for pythagorean fuzzy AHP

Linguistic terms used in pythagorean fuzzy AHP
Pythagorean fuzzy number

µL µU νL νU

Certainly low importance (CLI) 0 0 0.9 1
Very low importance (VLI) 0.1 0.2 0.8 0.9
Low importance (LI) 0.2 0.35 0.65 0.8
Below average importance (BAI) 0.35 0.45 0.55 0.65
Average importance (AI) 0.45 0.55 0.45 0.55
Above average importance (AAI) 0.55 0.65 0.35 0.45
High importance (HI) 0.65 0.8 0.2 0.35
Very high importance (VHI) 0.8 0.9 0.1 0.2
Certainly high importance (CHI) 0.9 1 0 0
Exactly equal (EE) 0.1965 0.1965 0.1965 0.1965

Source: Lahane and Kant, 2021

Table A2. Linguistic scale for pythagorean fuzzy Co-Co-So

Linguistic terms used in
pythagorean fuzzy Co-Co-so

Pythagorean fuzzy number
µL µU

Extremely low EL 0 1
Very low VL 0.1 0.9
Low L 0.2 0.8
Middle low ML 0.3 0.7
Below middle BM 0.4 0.6
Middle M 0.5 0.5
Above middle AM 0.6 0.4
Middle high MH 0.7 0.3
High H 0.8 0.2
Very high VH 0.9 0.1
Extremely high EH 1 0

Source: Lahane and Kant, 2021
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Appendix 3

Table A3. Details of expert panel

Expert
code

Age
group

Educational
qualification

Role in industry/
academics Department

Work
experience
(years)

E1 41–45 Ph.D. Pursuing Professor Mechanical engineering 20
E2 31–35 Ph.D. Pursuing Asst. Professor Mechanical engineering 10
E3 45–50 Ph.D Owner/proprietor Manufacturing 06
E4 41–45 Graduate Senior project manager Production 19
E5 41–50 Ph.D DGM Manufacturing 27
E6 45–50 Postgraduate General manager Manufacturing 25
E7 48 BE and PG diploma in

advanced computing
Associate Director –
Projects

Software development 20

E8 45–50 Postgraduate Director-technology Administration 24
E9 45–50 Postgraduate Director Machining 21
E10 49 B. E. Partner Automation 24
E11 21–30 Postgraduate Sales manager Sales 4

Source:Authors’ own Creation
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