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Abstract

The present work proposes a semi-analytical technique for solution of mixed
boundary value problem in functionally graded circular annulus wherein
shear modulus varies radially in power-law form while Poisson’s ratio is con-
stant. The technique relies on two main steps. In the first step, corresponding
to terms in periodic Fourier series applied individually as traction along the
annulus surface, stress and displacement field in the annulus is computed
harnessing Airy stress functions approach. In the second step, leveraging the
strain-displacement relations in polar co-ordinates, mixed boundary condi-
tions are rendered in terms of displacement all along the annulus surface.
Assuming the unknown traction along the annulus surface in terms of pe-
riodic Fourier series with finite terms, the modified displacement boundary
condition, family of solution from the first step and orthogonality of sine and
cosine functions is used to generate a system of simultaneous linear equa-
tions for the series coefficients. Knowing the coefficients of periodic Fourier
series, stress and displacement field can be computed everywhere in the an-
nulus. The first step is digitized in terms of MAPLE functions, exhaustively
validated through traction distribution comprising of normal, shear traction
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Journal Pre-proof
on part of the boundary and pair of equal and diametrically opposite point
load along the boundary. The second step is corroborated through a prob-
lem where the inner surface is subjected to a specified traction distribution
and mixed boundary conditions exist along the outer surface in the form of
complete constraint along a part and traction-free condition elsewhere.

Key words: Elasticity; Analytical modelling; Functionally graded circular
annulus

1. Introduction

Functionally graded (FG) materials belong to the class of inhomoge-
neous material wherein the material properties vary smoothly with spatial
co-ordinates in a prescribed manner [1, 2]. Many of the naturally occuring
materials like nacre, shells are FG and infact owe their superior mechanical
response to the underlying inhomogeneity [3]. Taking a clue from nature and
simultaneously aided with advancement in manufacturing technology has led
to development of man-made FG materials with applications in the area of
rocket engine components [4], protective coatings on turbine blades [5], re-
placement of damaged bones and teeth in human beings [6–8], bullet-proof
vests [9]. Apart from FG materials, layered media [10], composites [11] con-
stitute examples of popular inhomogeneous material systems known to be
extremely proficient in serving specific functional requirement. In these sys-
tems, the material properties vary discretely which is reflected through the
variation in stress and strain field. On the contrary, the continuous varia-
tion of material properties in FG materials lead to smooth distribution of
stress and strain field. Therefore FG materials have been advocated to serve
the dual goal of serving a specific functional requirement and at the same
time regulating the stress-levels [1, 12, 13]. The latter in turn reduces the
stress-concentration and the con-commitant defect nucleation and evolution.
Impact of functional grading on contact and fracture response, two of the
most important problems in solid mechanics are the subject of many of the
recent investigation [14–17].
Noting the influence of functional grading on stress concentration, researchers
have tried to design FG material system which minimizes stress concentra-
tion. In one approach, the objective is to seek a suitable functional grading
[18–20] while in the other approach FG material is explored as a bridging
layer in the form of strip or annulus joining two materials [13, 21–26]. Many
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of these studies [13, 18–26] are semianalytical in nature owing to the choice of
separable geometry and traction boundary conditions (BCs). Consistent in
the manner of approach, the present study deals with a two-dimensional cir-
cular power-law FG annulus but subjected to arbitrary BCs including mixed
boundary conditions (MBCs) in a semi-analytical framework. Through the
ability to handle all kinds of BCs, the present work is a step towards expand-
ing the scope of the works [13, 18–26]. Before moving onto the next section,
the following paragraphs summarizes the important work dealing with FG
circular annulus to bringforth the absence of similar work in literature.
The mathematical form of the grading assumed for FG circular annulus from
literature are linear [27, 57] , power-law [28–32], exponential [33, 53–58] .
One of the earliest elasticity solution involving FG annulus dealt with solu-
tion to Lame’s problem in an annulus with power-law variation in Young’s
modulus [31]. Pan and Roy [32] through assumption of separation of vari-
ables based solution to displacement-strain-stress field and periodic Fourier
series expansion as the functional form in θ direction presented solution to
homogeneous and/or FG with power-law grading in elastic modulus multi-
layered annulus subjected to displacement and/or traction BCs. Jabbari and
co-workers [29, 30, 34] provided the thermoelasticity solution in a FG circu-
lar annulus with power-law grading while being subjected to thermal and
mechanical loads. Li and Peng [28] gave an integral equation based solution
for axisymmetric deformation in FG circular annulus with any arbitrary ra-
dial variation in elastic properties. In contrast to works discussed till now,
focussing on axi-symmetric deformation in a FG circular annulus, Batra and
co-workers [18–20] dealt with the inverse problem wherein the nature of func-
tional grading was pursued while ensuring either minimization of stress or
maximization of stiffness. Adopting approach similar as [32], Nie and Batra
[18] assumed the Airy stress function as separable function of radial r and
tangential θ co-ordinate with the latter represented through periodic Fourier
series terms, and gave a semi-analytical solution for stress and displacement
in a FG circular annulus with power-law functional form for elastic modulus
and Poisson’s ratio and subjected to traction and/or displacement boundary
conditions. Li and Liu [27] treated FG circular annulus as equivalent to a
number of homogeneous circular annuli perfectly bonded to each other and
applied the complex variable approach to latter and gave elasticity solution
for traction boundary conditions. The study by Mohammadi et al. [35]
on FG cylindrical coatings undergoing axisymmetric deformation concluded
that spatial variation of Poisson’s ratio can significantly influence the results

3

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
for thick cylinders. The idea of having a layer of FG material as a stress
controlling measure in circular annulus geometry explored primarily through
axisymmetric deformation in [21–26] was extended by Li et al. through gener-
alized bi-axial loading [13] and their study revealed that stress concentration
can be reduced substantially as compared to the homogeneous counterpart
through tuning of the functional form of grading.
It is evident from the above literature survey concerning FG circular annu-
lus, that none of the works have focussed on MBCs which as a matter of fact
describe most of the actual scenarios. Popular numerical approaches like
finite element (FE) [36] and boundary element (BE) [37] methods are not
restricted by geometry, boundary conditions or material response but being
numerical in nature cannot fully replace an analytical solution. Wang and
Hasebe [38] have extended the Complex variable method, an extremely pow-
erful and varsatile approach in two-dimensional homogeneous elasticity [39]
to FG material having constant Poisson’s ratio and elastic modulus slightly
perturbed from the homogeneous state. The latter condition is restrictive and
importantly fails to address FG material with significant gradient. Addition-
ally, the concept of analytic continuation which allows closed form solution
of problems with MBCs via Complex variable method is not workable for
annulus geometry [40, 41].
The importance of mixed boundary value problems (MBVPs) cannot be
overemphasized and the work presented here is a step to redress the ex-
isting gap in literature involving MBVPs in FG circular domain. Power-law
variation in radius is assumed for shear modulus while the Poisson’s ratio is
treated as constant. The procedure to handle MBVPs on circular domain
is decomposed into two steps. In the first step, in a view to replicate Michell
solution [42–44] for power-law FG material, solution for displacement and
stress in annulus is developed for all distinct and statically meaningful terms
in the periodic Fourier series as applied traction along the annulus surface.
All these traction cases collectively will be hereafter referred to as standard
loading. Under the presumption that any form of applied traction along the
annulus surface can be reasonably represented through periodic fourier se-
ries with the coefficients extracted through orthogonality of sine and cosine
functions, stress and displacement in the annulus can be obtained through
linear superposition of the solution corresponding to the standard loading. In
case, displacement BCs are prescribed, periodic fourier series with unknown
coefficients is considered as the traction along the annulus surface. Using
solution corresponding to standard loading, displacement field is assembled
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along the annulus surface in terms of the unknown coefficients. Equating the
same to known displacement BC and invoking orthogonality, unknown coef-
ficients can be computed and thereby leading to the complete field solution.
The solutions associated with standard loading are specialized to cavity in
an infinite plane. Now it is important to mention that the approach concern-
ing solution of problems involving traction and displacement BCs discussed
above bears similarity with the past works [32] and [18], especially the latter
where in fact Poisson’s ratio was also assumed to vary radially in power-law
form. So without claiming novelty of the process detailed in the first step, it
is worthwhile to mention that the steps are laid down very systematically and
applied to test cases not discussed in any of these references. Significantly,
the outcome of first step is crucial to the second step, where mixed boundary
conditions are tackled. The MBC pose a challenge because of the inabil-
ity to apply orthogonality due to lack of consistently one type of boundary
condition. Following Singh and Bhandakkar [41], the strain-displacement
relations in polar co-ordinates is exploited to represent traction along the
annulus boundary as a linear combination of displacement and its gradients.
As a consequence, MBC can be rewritten in terms of displacement all along
the annulus boundary and orthogonality can be applied as discussed above
while talking about displacement BC case. Due to the presence of unknowns
on either side of the modified BC, the unknown coefficients of the periodic
Fourier series are realized through solution of a system of simultaneous linear
equations.
The outline of the remaining paper is as follows. Next section describes the
problem followed by section detailing the solution methodology to generate
stress and displacement field tied to standard loading. The subsequent sec-
tion outlines the steps to apply the solutions for standard loading to traction,
displacement and mixed BC cases respectively. It is succeeded by Results and
Discussion section where the presented work is adequately validated through
the test cases encompassing traction and mixed BCs. Lastly the Conclusions
section summarizes the present work.

2. Problem formulation and definition

Fig. 3 shows the cross-section of a linear elastic, isotropic, hollow cylinder
of inner radius r1, outer radius r2 possessing a radially varying shear modulus
µ(r) and constant Poisson’s ratio ν. The radial variation of µ is assumed to
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be power-law and given as [28],

µ(r) = M

(
r

r2

)β
, (1)

where M is the shear modulus of cylinder at radius r2 and exponent β is
the inhomogeneity parameter whose deviation from 0 is the measure of in-
homogeneity in the material. The two-dimensional elasticity problem dealt
here can be either plane stress (Pσ) or plane strain (Pε) depending upon the
extent of out-of-plane dimension as compared to the in-plane dimensions and
loading variation in the out-of-plane direction. Considering the cylindrical
geometry and the cross-section, the associated field quantities in Fig. 3 and
the governing equations are described using (r, θ) polar co-ordinates. The
radial and tangential components of displacement are denoted by ur and uθ
while the in-plane components of stress (strain) are σr, σθ, σrθ (εr, εθ, εrθ) re-
spectively. Under quasi-static conditions and in the absence of body force,
the planar equilibrium equations are given as [42, 43],

∂σr
∂r

+
1

r

∂σrθ
∂θ

+
1

r
(σr − σθ) = 0,

∂σrθ
∂r

+
1

r

∂σθ
∂θ

+
2

r
σrθ = 0. (2)

The in-plane strain-displacement relations are given as [43],

εr =
∂ur
∂r

, εθ =
ur
r

+
1

r

∂uθ
∂θ

, εrθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
, (3)

and lead to the in-plane strain components being constrained through com-
patibility condition as [44],

∂2εθθ
∂r2

+
1

r2
∂2εrr
∂θ2

+
2

r

∂εθθ
∂r
− 1

r

∂εrr
∂r

=
2

r

∂2εrθ
∂r∂θ

+
2

r2
∂εrθ
∂θ

. (4)

The planar form of generalized Hooke’s law relating stress and strain com-
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ponents is given as [42, 43],

εr =
1

8

σr (1 + κ)− (3− κ)σθ
µ(r)

, εθ =
1

8

σθ (1 + κ)− (3− κ)σr
µ(r)

, εrθ =
1

2

σrθ
µ(r)

,

(5)

where κ is the Kolosov constant equal to (3 − ν)/(1 + ν) and (3 − 4ν) for
plane stress (Pσ) and plane strain (Pε) deformation respectively.
Specification of boundary conditions (BCs) along with equilibrium equations
Eq. (2), strain-displacement relations Eq. (3), stress-strain relation Eq. (5)
will complete the description of the elasticity problem [43, 44]. Boundary
condition can be provision of either displacement or traction or combination
of both traction and displacement along the boundary surface [45]. The
latter being termed as mixed boundary conditions (MBCs) and concerns the
present work. Thus in general, the boundary conditions for annulus can be
written as follows [41]; along radius r1,

α11(θ)ur(r1, θ) + β11(θ)σr(r1, θ) = f11(θ),

α12(θ)uθ(r1, θ) + β12(θ)σrθ(r1, θ) = f12(θ), (6)

while along the outer radius (r = r2),

α21(θ)ur(r2, θ) + β21(θ)σr(r2, θ) = f21(θ),

α22(θ)uθ(r2, θ) + β22(θ)σrθ(r2, θ) = f22(θ), (7)

where α11, β11, α12, β12, α21, β21, α22, β22, f11, f12, f21, f22 are known functions
of θ. Displacement BCs are recovered when coefficient βij = 0, while traction
BCs imply αij = 0, i, j = 1, 2 and 0 < θ < π. If either of the Eq. (6) or
(7) cannot represent the boundary condition singlehandedly throughout the
annulus surface, then the boundary conditions represent MBCs.
An obvious approach to solve elasticity problem on FG circular annulus would
be to seek generalized stress and displacement field analogous to the Michell
solution in homogeneous medium [42–44]. The generalized solution forms
the basis function for representation of stress-displacement field in annulus
under any set of boundary conditions including MBCs. Consequently the
next section discusses the solution methodology to construct the generalized
solution for FG annulus and is followed by the procedure to apply it to
problems with MBC.
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3. Generalized stress-displacement field in FG annulus

The generalized solution for stress and displacement in the elastic FGM
annulus can be generated by accounting for all possible traction loading on its
boundaries. A reasonably smooth radial (p(θ)) and tangential (q(θ)) traction
on the boundaries of the annulus can be adequately represented through
periodic Fourier series representation as [46],

p(θ) = p0 +
∞∑

ω=1

pcω cos(ωθ) +
∞∑

ω=1

psω sin(ωθ),

q(θ) = q0 +
∞∑

ω=1

qcω cos(ωθ) +
∞∑

ω=1

qsω sin(ωθ), (8)

where

p0 =
1

2π

∫ 2π

0

p(θ) dθ, pcω =
1

π

∫ 2π

0

p(θ) cos(ωθ)dθ, psω =
1

π

∫ 2π

0

p(θ) sin(ωθ)dθ,

q0 =
1

2π

∫ 2π

0

q(θ)dθ, qcω =
1

π

∫ 2π

0

q(θ) cos(ωθ)dθ, qsω =
1

π

∫ 2π

0

q(θ) sin(ωθ)dθ,

(9)

and ω is a positive integer. Thus the generalized solution for FGM along
the lines of Michell solution can be obtained by deriving the elasticity solu-
tion corresponding to each term in the series Eq. (8) in isolation as loading
applied at inner and outer boundary of the annulus respectively. Note that
except for cos θ and sin θ, every other term in the series regarded as either ra-
dial and tangential traction acting along the radial boundary, independently
satisfies the force and moment balance for annulus [43] and hence qualify
as a statically meaningful loading cos θ (sin θ) and sin θ (cos θ) as radial and
tangential load respectively along any radial boundary have to be considered
simultaneously to ensure force and moment balance [43] and will be dealt
separately. The procedure to derive stress and displacement field is common
to all the series terms in Eq. (8) and is illustrated with the example of power-
law FG hollow cylinder subjected to radial traction cos(nθ), n ≥ 2 along the
inner radius r = r1 and traction free outer surface (r = r2). The BCs are

8

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
thus given as,

σr(r1, θ) = − cos(nθ), σrθ(r1, θ) = 0,

σr(r2, θ) = 0, σrθ(r2, θ) = 0. (10)

Airy stress function (φ(r, θ)) method is adopted to further proceed with the
solution. The in-plane components of stress are expressed in terms of φ(r, θ)
as [42, 43],

σθ(r, θ) =
∂2φ(r, θ)

∂r2
, σr(r, θ) =

1

r

∂φ(r, θ)

∂r
+

1

r2
∂2φ(r, θ)

∂θ2
,

σrθ(r, θ) =
1

r2
∂φ(r, θ)

∂θ
− 1

r

∂2φ(r, θ)

∂r∂θ
, (11)

and ensure the satisfaction of equilibrium equations (Eq. (2)). Combining
Eqs.(4), (5), and (11) leads to the following governing equation for φ(r, θ),

[
(κ− 3)r3

∂φ(r, θ)

∂r
+ (κ− 3)r2

∂2φ(r, θ)

∂θ2
+ (κ+ 1)r4

∂2φ(r, θ)

∂r2

]
µ(r)

d2µ(r)

dr2

+

[
(−2κ+ 6)r3

∂φ(r, θ)

∂r
+ (−2κ+ 6)r2

∂2φ(r, θ)

∂θ2
+ (−2κ− 2)r4

∂2φ(r, θ)

∂r2

]

(
dµ(r)

dr

)
2 +

[
(2κ+ 2)r2

∂3φ(r, θ)

∂θ2∂r
+ (2κ+ 2)r4

∂3φ(r, θ)

∂r3
− (κ+ 1)r2

∂φ(r, θ)

∂r

− (3κ+ 3)r
∂2φ(r, θ)

∂θ2
+ (3κ− 1)r3

∂2φ(r, θ)

∂r2

]
µ(r)

dµ(r)

dr
−
[
(2κ+ 2)r3

∂3φ(r, θ)

∂r3

− (2κ+ 2)r2
∂4φ(r, θ)

∂θ2∂r2
+ (2κ+ 2)r

∂3φ(r, θ)

∂θ2∂r
− (κ+ 1)

∂4φ(r, θ)

∂θ4

− (κ+ 1)r4
∂4φ(r, θ)

∂r4
− (κ+ 1)r

∂φ(r, θ)

∂r
+ (−4κ− 4)

∂2φ(r, θ)

∂θ2
+

(κ+ 1)r2
∂2φ(r, θ)

∂r2

]
(µ(r))2 = 0 (12)

Note that the substitution of β = 0 in Eq. (1) reduces Eq. (12) to
the well-known biharmonic equation for Airy stress function in homogeneous
medium [42–44]. Given a smooth function f(θ) of periodic variable θ, its
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periodic Fourier transform f̄(ω) is given as [46],

f̄(ω) =

∫ 2π

0

f(θ) exp(−iωθ)dθ (13)

where ω is an integer and i =
√
−1. Note that the fourier transform of a func-

tion is denoted by an overhead bar over the function symbol. ω appearing in

Eq. (13) has no connection with the one in Eq. (9) except for the fact that

both are positive integers. The inverse fourier trasform to retrieve back the
original function is [46],

f(θ) =
1

π

∫ 2π

0

f(ω)dθ (14)

Exploiting the periodic nature of the resulting solution, the partial differ-
ential equation (pde) Eq. (12) can be reduced by applying periodic fourier
transforms as,

− (1 + κ)r4
d4φ(r, ω)

dr4
+ 2 (1 + κ)(β − 1)r3

d3φ(r, ω)

dr3

+ (−β2κ+ 2 kω2 − β2 + 2 β κ+ 2ω2 − 2 β + κ+ 1)r2
d2φ(r, ω)

dr2

+ (1 + β)(−2κω2 − β κ− 2ω2 + 3 β − κ− 1)r
dφ(r, ω)

dr
+ ω2(β2κ− κω2 − 3 β2 + 4 β κ− ω2 + 4κ+ 4)φ(r, ω) = 0. (15)

It is noted that the above Eq. (15) is the well-known homogeneous Cauchy-
Euler ordinary differential equation (ode) in r with solution of the form rm

[46]. Substituting the proposed power-law solution for φ(r, ω) in Eq. 15 gives
the following quartic equation in the unknown exponent m,

(1 + κ)m4 + (−2 β κ− 2 β − 4κ− 4)m3+

(β2κ− 2κω2 + β2 + 4 β κ− 2ω2 + 8 β + 4κ+ 4)m2+

(2 β κω2 + 2 β ω2 + 4κω2 − 4 β2 + 4ω2 − 8 β)m+

(−β2κω2 + kω4 + 3 β2ω2 − 4 β κω2 + ω4 − 4κω2 − 4ω2) = 0 (16)
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with roots mi, i = 1, 2, 3, 4 obtained via symbolic software MAPLE©,

m1 = P (ω) +Q(ω), m2 = P (ω)−Q(ω),

m3 = P (ω) +R(ω), m4 = P (ω)−R(ω), (17)

where P (ω), Q(ω), R(ω) are given as,

P (ω) =
β

2
+ 1, Q(ω) =

Q1(ω)

2(1 + κ)
, Q1(ω) =

√
(κ+ 1)(T1 + T2),

T1 = 4[(β + 2)2(ωκ)2 − 2(β2 − 4)ω2κ+ (β + 2)(2− 3β)ω2 + 4β2]1/2,

T2 = (κ+ 1)[β2 + 4ω2 + 4]− 4(κ− 1)β,

R(ω) =
1

2

√
(R1 +R2)

(κ+ 1)
,

R1 = −4
√

((κ− 3) β + 2κ+ 2) (β + 2) (κ+ 1)ω2 + 4 β2,

R2 =
(
β2 + 4ω2 + 4 β + 4

)
κ+ β2 + 4ω2 − 4 β + 4.

Thus the solution of Eq. (15) in fourier domain is,

φ(r, ω) = C1(ω)rm1 + C2(ω)rm2 + C3(ω)rm3 + C4(ω)rm4 (18)

where C1(ω), C2(ω), C3(ω), C4(ω) are constants to be determined based on
the boundary conditions at the inner (r = r1) and outer (r = r2) boundary
respectively. Applying periodic Fourier transform to the boundary conditions
Eq. (10) of the illustrative problem,

σr(r1, ω) = π[δ(n+ ω) + δ(n− ω)], σrθ(r1, ω) = 0,

σr(r2, ω) = 0, σrθ(r2, ω) = 0, (19)

where δ() is the Dirac Delta function [45]. Combining Eqs.(13) and (15), the
relationship between Airy stress function φ and stress-components in Fourier
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domain is,

σθ(r, ω) =
d2φ(r, ω)

dr2
, σr(r, ω) =

1

r

dφ(r, ω)

dr
− ω2

r2
φ(r, ω),

σrθ(r, ω) =
1

r2
dφ(r, ω)

dr
− iω

r

dφ(r, ω)

dr
. (20)

Substituting BCs from Eq. (19) in Eq. (20) and using the solution for φ
given in Eq. (18) leads to a system of four simultaneous linear equations in
C1(ω),C2(ω),C3(ω),C4(ω) which were solved symbolically in MAPLE© to re-
veal the closed form solution of the integration constants C1(ω), C2(ω), C3(ω),
C4(ω).
Knowing C1(ω),C2(ω),C3(ω), C4(ω), Eqs. (18) and (20) can be used to de-
duce the in-plane stress components in Fourier domain. The components
in physical domain can be computed by applying inverse Fourier transform
Eq. (14) and utilizing the ”Sifting” property of Dirac delta function [46],

∫ 2π

0

f(ω)δ(n± ω)dω = f(∓n). (21)

Knowing the stresses, strains can be computed based on Eq. (5) and followed
by integration of strain-displacement relationship Eq. (3) to yield displace-
ment sans rigid body motion terms [43]. The expressions being lengthy are
provided in Supplementary file. The combination of cosine or sine function
(n ≥ 2) as normal or shear traction applied along inner or outer radius leads
to eight possibilities. The procedure illustrated above is applied to these
eight combinations and the result is compiled as a set of eight independent
MAPLE© software based functions which outputs in-plane stress and dis-
placement components in polar co-ordinates for a given n. The steps and its
sequence is graphically spelled out in the form of flowchart given in Fig. 1.
The case of p(θ) = p0 corresponds to the well-known Lame’s problem and
leads to θ independent axisymmetric deformation. The closed form solution
to Lames’s problem for power-law graded annulus is available in the literature
having derived using Fredholm integral equation [28], Airy stress function [19]
and is summarized below for completeness. Owing to θ independence, the
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governing equation Eq. (12) reduces to,

− (κ+ 1)r4
d4φ(r)

dr4
+ (2 β κ+ 2 β − 2κ− 2 )r3

d3φ(r)

dr3

+ (−β2κ− β2 + 2 β κ− 2 β + κ+ 1)r2
d2φ(r)

dr2

+ (−β2κ+ 3 β2 − 2 β κ+ 2 β − κ− 1)r
dŒ(r)

dr
= 0 (22)

which is also a Cauchy-Euler ODE with 1, rβ+2, rα, rβ+2−α as the fundamental
solutions (MAPLE 18), where α is given as,

α = 1 +
β

2
+

[(κ+ 1)(β + 2)2 − 16β]1/2

2
√
κ+ 1)

(23)

The first two solutions are discarded as they violate the requirement of zero
tangential displacement uθ in an axisymmetric deformation. Thus the feasi-
ble solution of Airy stress function for the case of constant normal pressure
along inner and outer boundaries is,

φ(r) = C3r
α + C4r

β+2−α, (24)

where C3, C4 are arbitrary constants to be determined based on the applied
pressure along the boundary. Applying Eq. (11) in combination with Eq.
(24), the non-zero in-plane stresses are,

σr = C3αr
α−2 + (β − α + 2)C4r

β−α,

σθ = C3α(α− 1)rα−2 + (β − α + 2)(β − α + 1)C4r
β−α. (25)

Consideration of first term in the R.H.S of Eq. (8) as loading amounts to,

σr(r1) = −p1, σr(r2) = −p2, (26)

as boundary conditions. Eqs. (25) and (26) can be solved together to yield
the values of the unknown constants C3 and C4. Knowing the stresses, strain
(Eq. (5)) and subsequently displacements (Eq. (3)) can be computed. The
expressions being lengthy are not provided here but it was ensured that
they confirm with the available solution for the Lames problem in literature
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[18, 28, 58] , as well as the homogeneous solution (β = 0) [43, 44]. These

solutions are converted into two MAPLE© software functions which yield
the in-plane stresses and displacement in the circular annulus while being
subjected to internal and external pressure respectively.
In contrast with the constant pressure case, the case of constant shear trac-
tion q0 along a radial surface cannot exist on its own and hence is not a valid
loading for solid disc (r1 = 0). In the case of annulus, a constant shear trac-
tion of q1 along the inner radius r = r1 demands a constant shear traction of
−(r1/r2)

2q1 to be applied along the outer radius to ensure moment balance
[43]. Through invocation of moment balance on an annulus of inner radius
r1 and outer radius r < r2 and equilibrium equations (Eq. (2)), it can be
concluded that the stress field for constant shear traction along annulus is,

σr = 0, σrθ(r, θ) = q1

(
r1
r

)2

, σθ = 0. (27)

Note that the above solution is independent of β and in fact upholds for any
material response of annulus. Combination of Eqs. (27), (5) and (3) followed
by integration leads to the displacement field as,

ur(r, θ) = 0, uθ(r, θ) =
q1
M

r21r
β
2

rβ+1
. (28)

For β = 0, the displacement field in Eq. (28) confirms with the solution for
homogeneous material [43]. Eqs. (27) and (28) are also converted into a
MAPLE© function for constant shear traction along the annulus surface.
As discussed earlier, cos θ or sin θ cannot be the standalone normal or tan-
gential traction acting along the annulus surface. Rather a combination of
cos θ (sin θ) and sin θ (cos θ) as normal and tangential traction respectively
along a radial surface is necessary to ensure force and moment balance [43].
Accounting for inner and outer surfaces and combination of cosine and sine
functions, a total of four loading scenarios ensue and were solved repeat-
ing the procedure demonstrated via the solution of the example with BCs
given by Eq. (10). The four cases are also coded as MAPLE© functions
to complete all the loading possibilities for an annulus as dictated by Eq.
(8). A compilation of all the MAPLE© functions constitutes the generalized
Michell function for power-law FG linear elastic circular annulus and signifies
the first major contribution of the present work.
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3.1. Infinite plane with circular cavity

The geometry of an infinite plane with circular cavity can be recovered
from the annulus in the limit of outer radius r2 → ∞. Procedure wise,
there is no change owing to the domain modification but the requirement of
bounded stress and displacement field at infinity necessitates the exponent in
the power-law solution to be non-positive. So amongst the four possibilities
for exponent expressed in Eq. (17), two of the values have to be discarded
on account of their non-negativity. Since the sign of roots depend on β and
n in the applied loading, to identify the roots to be disposed of, following
strategy was utilized. It was graphically checked that for feasible values of
β and any n, amongst the four roots given in Eq. (17), m1 > 0,m2 < 0
regardless of the sign of β, while the roots m3 > 0,m4 < 0 for β > 0 and
viceversa. Thus depending upon whether β is positive or negative, {m2,m4}
or {m2,m3} respectively are the relevant roots for the infinite domain with
circular cavity. For the case of traction specified along the cavity surface,
using the two appropriate roots, the Airy stress function in Eq. (18) can be
proceeded along the same lines as finite annulus for calculation of stresses and
displacement in the infinite plane with cavity. If the loading on the cavity is
axisymmetric, only one root out of {m1,m2,m3,m4} is relevant. Graphical
check for feasible values of β led to m3 in Eq. (17) as the sole root for finite
stresses and displacement.

4. Solution strategy for BVP in power-law FG annulus

The present section describes the steps to be undertaken to calculate
stress and displacement in the power-law FG annulus corresponding to trac-
tion, displacement and mixed BCs on the annulus surface.

4.1. Traction BVP

In case, the traction distribution on the inner and/or outer surface of an-
nulus i.e. αij = 0 in Eqs. (6, 7) is prescribed, the steps to compute stresses
and displacement in the annulus is as follows:
a) The given traction is resolved in the radial (p(θ)) and tangential (q(θ))
direction respectively.
b) Following Eqs. (8 - 9), the loading at inner and/or outer surface is repre-
sented in terms of its periodic Fourier representation. Depending upon the
applied loading, the upper range in the summation sign is terminated at a
finite number N to ensure convergence of the ensuing series for displacement
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and stress components.
c) The Maple© functions for stress and displacement field in the annulus
corresponding to the periodic Fourier function as radial and/or tangential
loading at the inner and/or outer surface dealt in previous section are in-
voked.
d) Applying the principle of superposition [42, 43], the stress and displace-
ment components corresponding to each Maple© function are amplified with
the respective fourier series coefficient and added to yield the requisite solu-
tion.
A series of loading scenarios are dealt in the Results and Discussion section
to validate the above procedure and the MAPLE© functions via comparison
with an independent finite element (FE) simulation in ABAQUS [47].

4.2. Displacement BVP

In case the boundary conditions along the annulus surface is in terms of
displacement i.e. βij = 0, then the Mitchell solution derived for power-law
FGM can be applied as follows:
(a) Expression described by the periodic Fourier series in the right hand side
of Eqs.(8-9) is assumed as the radial and tangential loading on the annulus
surface with the infinite sum truncated at a reasonable N value. Thus barring
the case of constant shear traction, for a given N , the total number of coeffi-
cients and functions to be handled are 2(N −1) + 1 + 2(N −1) + 2 = 4N −1.
(b) Using the Maple© function corresponding to each functional term in the
expression of Eqs. (8-9) at the appropriate (inner or outer) surface, the dis-
placement field is expressed in terms of the unknown coefficients.
(c) The displacement field along the (inner/outer) surface is equated to the
given boundary condition and summoning the orthogonality property of sine
and cosine functions, the coefficients can be extracted.
(d) The value of N in step (a) is decided to ensure convergence of series in
the solution of stress and displacement field.
(e) The contribution to displacement field from the loading at the bound-
ary other than the one where displacement BC is applied should also be
accounted.

4.3. Mixed BVP

The method of expressing traction along boundary surface in terms of
periodic Fourier series and then proceeding with Maple© based Mitchell
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functions cannot be implemented for MBCs as the form of BC is not consis-
tent throughout [0, 2π]. The issue can be resolved by reexpressing the BCs
consistently in terms of displacements [41] through combined application of
stress-strain and strain-displacement relationship. For instance, Eqs.(3, 5)
allows the boundary condition Eq. (6) at inner radius r1 to be written as
follows [41],

ur(r1, θ) =

r1

(
(κ− 1)f11 − β11

[
µ(r)(κ+ 1)∂ur

∂r
+ 1

r1

∂uθ
∂θ

]

r=r1

)

r1α11(κ− 1) + µ(r)(3− κ)
,

uθ(r1, θ) =

r1

(
f12 − β12µ(r)

[
1
r1
∂ur
∂θ

+ ∂uθ
∂r

]

r=r1

)

r1α12 − µ(r)β12
, (29)

along the outer radius r2 as,

ur(r2, θ) =

r2

(
(κ− 1)f21 − β21

[
µ(r)(κ+ 1)∂ur

∂r
+ 1

r2

∂uθ
∂θ

]

r=r2

)

r2α21(κ− 1) + µ(r)(3− κ)
,

uθ(r2, θ) =

r2

(
f22 − β22µ(r)

[
1
r2
∂ur
∂θ

+ ∂uθ
∂r

]

r=r2

)

r2α22 − µ(r)β22
, (30)

Similar reexpressions for BCs in terms of displacement can be achieved for
Eqs. (7) . Once the BC is expressed in terms of displacement as in Eq.

( 29 , 30) the method to solve MBV on a given surface is as follows:
(a) Analogous to the case of displacement BC in previous section, expression
in Eqs. (8, 9) is assumed as the traction distribution with a suitable choice
of N for the upper limit in the infinite sum, leading to the total number of
unknown coefficients equal to 4N − 1. The BC at the other radius of the
annulus will ascertain whether the constant shear traction term has to be
considered or not.
(b) Corresponding to the functional terms in Eqs. (8-9) as radial or tangen-
tial traction at the desired (inner/outer) surface, the relevant Maple© based
Mitchell functions are called and the displacement field is assembled in terms
of the unknown coefficients in Eqs. (8-9). The displacement field ur and uθ
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is further appended with (A cos θ + B sin θ) and (−A sin θ + B cos θ + Cr)
respectively to acknowledge rigid body translation A,B along the cartesian
co-ordinates and small anticlockwise rotation C about the origin.
(c) The expression for displacement field at the MBC surface is evaluated
and substituted in the reformulated BC (e.g. in Eq. (29)). Due to the
presence of displacement and/or its gradient on either side, unknown co-
efficients appear on both sides of the reformulated equation. A system of
2(1 + 2N) = 4N + 2 simultaneous linear equations is generated by appealing
to orthogonality property of sine and cosine functions. The difference of 3
between the number of equations and unknown coefficients is accounted by
the rigid motion terms A,B,C mentioned in item (b).
(d) The linear equations are assembled and solved to reveal the coefficients.
(e) Note that the contribution to displacement from the surface other than
the one where MBC is applied should also be accounted while carrying out
step (c).
It was found that the process of assembling the complete displacement field
followed by orthogonality to form the system of equations was very time con-
suming and became unmanageable if N was chosen greater than 30. Instead,
a parallelization approach was adopted, wherein each loading was considered
separately and the sequence of operation was reversed i.e. orthogonality was
followed by assembly. The displacement field for a given standard loading in
Eqs. (8-9) was substituted in reformulated BC (e.g. Eq. (29)) and orthog-
onality w.r.t. 1, cos(ωθ), sin(ωθ), ω = {1, 2, ..., N} was applied on it and the
result was stored in a matrix at a designated place. The same process was
repeated for all the standard loading in Eqs. (8-9) taking care of appending
the result for each step at the appropriate place in the matrix. The matrix
was inputted to the linear solver in Maple© to get the unknown coefficients
corresponding to the standard loading in Eqs. (8-9). Once the coefficients are
known, displacement and stress field anywhere in the annulus can be calcu-
lated. The steps are also elucidated through the flowchart in Fig. 2 . The
validity of the above process will be demonstrated through a MBV problem
on annulus in next section.

5. Results and Discussion

5.1. Traction BVP

The correctness of Maple© functions for the standard loading and the
approach enlisted in the previous section will be firstly demonstrated through
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the following traction BVPs discussed below.
i) Uniform pressure p applied along two symmetric arcs of the inner radius
r1 of an annulus as shown in Fig. 3a:
The BCs along the inner r1 is,

σr(r1, θ) =

{
−p, 0 ≤ θ ≤ α, π − α ≤ θ ≤ π + α, 2π − α ≤ θ ≤ 2π,

0, α < θ < π − α, π + α < θ < 2π − α,
σrθ(r1, θ) = 0, 0 ≤ θ ≤ 2π, (31)

and along outer radius r = r2 is,

σr(r2, θ) = 0, σrθ(r2, θ) = 0, 0 ≤ θ ≤ 2π.

(32)

Following the procedure listed in sub-section 4.1, the radial traction at the
inner surface (Eq. (31a)) is expressed as a periodic Fourier series and cou-
pled with the Maple© functions for the standard radial loading at the inner
annulus surface, the stress and displacement field in the annulus is gener-
ated. Solution is explicitly calculated for p = 1, α = π/4,M = 0.385, r1 =
0.5, r2 = 1, ν = 0.3, β = 2, N = 100 assuming plane stress deformation. Ow-
ing to the discontinuous nature of loading, the periodic Fourier series and
subsequently the series solution to stress and displacement exhibits oscilla-
tions near the discontinuity, an undesirable feature well known as Gibb’s
phenomenon [48]. In fact the frequency and amplitude of oscillations grows
with the number of terms N in the series. However the oscillations can be
eliminated by the application of filtering and in this work, Lanczos filtering
scheme is adopted [41, 48, 49]. Accordingly the coefficient of constant, sine
and cosine function in p(θ) and q(θ) of Eqs.(8) are post multiplied with the
factor sin(ωπ/N)/(ωπ/N) known as sigma factor [48] and the modified fac-
tors are used for calculation of stresses and displacement anywhere in the
annulus. Hereafter it will be explicitly mentioned if filtering is used to com-
pute and display result in this work.
The result based on the current work are compared against the finite element
(FE) simulation carried out in ABAQUS ver. 6.11 [47]. Symmetry of the
problem (Fig 3a) about x and y axes is exploited and ergo quarter model
is implemented in ABAQUS. Temperature dependence of elastic properties
is a well-known method to simulate FGM response within FE software [50]
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and the same has been borrowed here. The details are briefly described in
Appendix A. FE mesh comprising of 23600, 4 noded Continuum Plane stress
element (CPS4) [47] is used to ensure converged result. The meshing was
done uniformly using the ”Structured Form” feature in ABAQUS [47] such
that the smallest element size is 0.005 along the radial direction. Fig. 4
show an excellent match for the in-plane stress and displacement compo-
nents along a representative path viz. radial line inclined at an angle of
21.36o with respect to the x-axis acquired from the present work (solid line)
and FE solution (circular markers). Note that σr and σrθ do satisfy the BCs
given in Eq. (31).
ii) Inner surface r1 of the annulus subjected to equal and opposite point load
F at the diameter ends as shown in Figure 3b:
The problem of concentrated point load along the annulus can be solved as a
special case of the previous problem. The net resultant of uniform pressure
p = F/(2r1 sinα) in Fig. 3a is horizontal force F acting along the x-axis in
the direction of +x (−x) axis for the loaded arc region to the right (left) of
the y-axis. Thus the solution corresponding to Fig. 3b can be recovered by
replacing p with F/(2r1 sinα) in the solution to the previous problem (Fig.
3a) followed by applying limit α→ 0 [44]. The calculation is worked out for
r1 = 1, r2 = 2, F = 1,M = 0.385, ν = 0.3, β = −2, N = 400 assuming plane
stress deformation. With regards to FE solution, symmetry allows a quar-
ter model subjected to point load F/2 sufficient for analysis. ”Free Form”
feature based mesh comprising of 8737 CPS4 elements were used with very
fine mesh near the point load with smallest element size 0.16 to guarantee
mesh convergence. Figs. 5 and 6 show comparison of the tangential stress σθ
and displacement component along the radial path overlapping with x-axis
(θ = 0) and along the inner radius r = r1 respectively based on the cur-
rent approach (solid line) and FE simulation (circular marks). Owing to the
symmetry, tangential component of displacement uθ is identically zero along
the x-axis and hence not shown in Fig. 5. Similarly appealing to angular
symmetry, results are displayed for θ = [0, π/2] in Fig. 6. The classical
1/r singularity in the stress-field due to application of point load [42–44] is
signalled from the sudden rise in the magnitude of σθ as r → r1 and θ → 0.
But being a series solution, the functional form of the singularity can’t be
deciphered independently no matter what value of N is used [41].
iii) Uniform tangential traction q1 acting along two equal and opposite arcs
of the inner radius r1 with subtended angle 2α countered by traction q2 =
q1(r1/r2)

2 in the opposite sense along concentric arcs with same subtended
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angle 2α on the outer radius r2 as shown in Fig. 3c:
Based on Fig. 3c, the boundary conditions along inner radius r = r1 are,

σr(r1, θ) = 0, (33)

σrθ(r1, θ) =

{
q1, −α < θ < α,

0, α < θ < 2π − α, (34)

and along outer radius r = r2 are,

σr(r2, θ) = 0, (35)

σrθ(r2, θ) =

{
q1(r1/r2)

2, −α < θ < α,

0, α < θ < 2π − α. (36)

Recapping the procedure listed in sub-section 4.1, the coefficients of the pe-
riodic Fourier series for the non-zero tangential traction are computed and
aided with Maple© function for the standard tangential loading along the
inner and outer surfaces, the stress and displacement field in the annu-
lus for Fig. 3c is developed. In particular, the results are computed for
α = π/6, r1 = 2, r2 = 4, β = 1.5,M = 0.385, ν = 0.3, N = 100 assuming
plane stress deformation. Symmetry consideration allows half model for FE
calculations. The mesh comprises of 21105 CPS4R elements with a fine mesh
(element with size ∼ 0.03) in the region around the point of discontinuity in
tangential traction. Fig. 7 demonstrates excellent comparison between the
prediction based on the present approach (solid line) and FE solution (circu-
lar markers) for the in-plane shear stress σrθ along the horizontal radial line
overlapping with the +x-axis.
Having demonstrated the capability of the current work in solving a variety
of traction BVP, the next sub-section will consider a MBVP.

5.2. Mixed BVP

Fig. 3d shows a hollow linear elastic cylinder made of power-law FGM
(1) whose inner surface (r = r1) is subjected to a prescribed radial traction
p1(θ) = sin(3θ) + cos(2θ) and tangential traction q1(θ) = cos(3θ) + sin(2θ)
while the outer surface (r = r2) is subjected to mixed bc i.e. a portion
of surface (α < θ < 2π − α) is traction-free while the remaining portion
(0 < θ < α; 2π − α < θ < 2π) is constrained.
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The BCs for the Fig. 3d are given as:

σr(r1, θ) = −p1(θ), σrθ(r1, θ) = −q1(θ), 0 < θ < 2π,

σr(r2, θ) = 0, σrθ(r2, θ) = 0, α < θ < 2π − α,
ur(r2, θ) = 0, uθ(r2, θ) = 0, −α < θ < α. (37)

It should be noted that the same problem was dealt in a homogeneous
medium (i.e. β = 0) by [41] and their results are used for validation of
the present work and at the same time used as a base-line to contrast re-
sult of the same problem with β 6= 0 to bring forth the effect of functional
grading on stress and displacement field. The stress-field is known to exhibit
square-root singularity with oscillating multipliers as the location along the
surface where BC switches from traction to displacement type is approached
[41, 51]. In Fig. 3d, at locations θ = α and 2π− α along r = r2, the change
in the type of BC occurs and hence here after these two locations are referred
to as singular points.
As described in sub-section 4.3, the MBCs in Eq. 37, are rewritten in terms
of displacement ur, uθ. Comparing Eq. 37 with Eq. 7, α21 = α22 = 1 for
−α < θ < α and 0 for α < θ < 2π − α, β21 = β22 = 0 for −α < θ < α and 1
for α < θ < 2π − α, f21 = f22 = 0 for 0 < θ < 2π. Hence employing Eq. 30,
the modified form of MBCs for Fig. 3d are,

ur(r2, θ) =

{
0, −α < θ < α,

− r2
ν
∂ur
∂r
|r=r2−∂uθ

∂θ
|r=r2 , α < θ < 2π − α,

uθ(r2, θ) =

{
0, −α < θ < α,
∂ur
∂θ
|r=r2+r2 ∂uθ∂r |r=r2 , α < θ < 2π − α. (38)

In-line with the procedure described in sub-section 4.1, firstly the inner sur-
face r = r1 is considered. The given traction is expressed as Fourier periodic
series (Eqs. (6-7)), to find out the respective Fourier series coefficients. The
MAPLE© functions corresponding to the non-zero coefficients are called,
amplified with the coefficient value, summed to form contribution to the
stress and displacement field due to loading at the inner surface r = r1. The
outer surface r = r2 is subjected to MBCs and the procedure reported in
sub-section 4.3 is adopted. Traction along radial and tangential direction
at r = r2 is assumed as a periodic Fourier series with a reasonable high
N value. Note that to start with the coefficients {p0,pc1, ps1, pcω,psω, qcω, qsω},
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ω = 2, 3, · · · , N are unknown. q0 is non-zero and predecided based on the
presence and value of constant part in the given tangential traction at the
inner surface r = r1. As described earlier, pc1 = qs1 and ps1 = qc1 for ensur-
ing force and moment balance of annulus. The MAPLE© functions related
to the unknown coefficients are called, augmented with the unknown coef-
ficients to express contribution to stress and displacement field due to the
outer surface. The total displacement at r = r2 stems from the result of
known inner surface contribution, outer surface contribution expressed in
terms of the unknown coefficients and the 3 rigid body terms A,B,C. This
displacement and its gradient with respect to r and θ evaluated at r = r2
is substituted in Eq. (30) and then subjected to orthogonality to generate
4N + 2 equations for 4N + 2 unknowns. As detailed earlier, owing to the
length of the expressions scaling with N , the sequence of operation to form
the system of equations is reversed with orthogonality applied first followed
by assembly. The system of equations is solved using the LinearSolve com-
mand in MAPLE©. In consonance with [41], the problem in Fig. 3d is
solved for ν = 1/3,M = 3/8, α = π/4, r1 = 0.5, r2 = 1, N = 250 under plane
stress conditions. Three values of inhomogeneity parameter β = {−2, 0, 2}
are considered with the result corresponding to the middle value compared
with [41] while for β 6= 0, the results of the present work are compared with
ABAQUS based FE results. The former will be referred to as Singh(2019)
in the plots. The FE mesh for the MBV problem in Fig. 3d, constructed by
employing the ”Structured Mesh” feature in [47] comprises of 115378 CPS4
elements [47] such that the smallest element size is 0.005 along the radius
r = r1. Note that a combination of symmetric and antisymmetric terms in
applied loading at the inner radius r = r1 allows a thorough check of all the
derived solutions and associated MAPLE© functions.
To start with, Fig. 8, 9 compares the in-plane stress and displacement com-
ponents along the outer radius r = r2 extracted from the present work with
Abaqus based FE result. Owing to the excessively large value of stress com-
ponents at the singular point (r = r2, θ = {α, 2π − α}) , the difference in
result with β value at other locations along r = r2 got concealed, thereby
hindering any meaningful conclusion. Hence for the sake of clarity, Fig. 8
shows results of in-plane stress-components for β = 2 case alone. As seen in
Fig. 8a, 8c, 9a, 9b, the primary requirement of boundary conditions i.e. trac-
tion free condition in the part α < θ < 2π − α and zero displacement in the
constrained portion 0 < θ < α and 2π − α < θ < 2π are correctly captured.
Stress component σθ (Fig. 8b) and displacement components {ur, uθ} (Fig.
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9) in the traction free portion α < θ < 2π − α as predicted by the present
work matches very well with [41] for β = 0 and FE result for β 6= 0. Greater
the value of the inhomogeneity exponent β, stiffer the FGM is and hence the
displacement is understandably smaller with increasing β. In the neighbour-
hood of the singular point (r = r2, θ → α, and θ → 2π − α), as expected,
stress components (Fig. 8a-c) exhibits very high frequency oscillations owing
to the square root singularity with oscillating multipliers [41, 51].
The present work being semi-analytical is not able to explicitly spell out the
mathematical form of the singularity but the oscillations in the solution sig-
nifies a signature of the lurking singularity. A variety of filtering schemes
are available to smoothen out the oscillations in the Fourier solution. Fig.
8d shows the outcome of the application of Lanczos filtering scheme [41] as
applied to the stress component σθ plotted along the outer radius r = r2. It
can be contrasted with Fig. 8b to appreciate the effect of filtering especially
in the vicinity of the singular points. Elsewhere the oscillations are small
and results with and without filtering are almost indistinguishable. Never-
theless, the oscillatory solution generated in the present work can be always
smoothened out by schemes like Lanczos filtering. Note that the oscilla-
tions observed in Figs. 8a,8b, 8c are all variants of the Gibbs phenomenon,
which occurs when quantities of interest i.e. stress and/or displacemen ex-
hibit sudden jump in their values [48]. The correctness of the present solu-
tion is further reinforced through comparison of the tangential stress σθ and
displacement components {ur, uθ} at the inner radius r = r1 through Fig.
10a and 10b-c respectively. Similar to Fig. 10a and 10b-c, maintaining the
loading, boundary conditions and geometry equal, with increasing β, due to
enhanced stiffness, displacement decreases while stress rises in the FG annu-
lus. Comparison and validation along a number of additional paths is also
carried out but not shown here for lack of novelty and space.

The results in Fig. 9-10 are calculated for a reasonably large N = 250 to
ensure high level of accuracy. In order to check the dependence of present
solution on N , strain energy

∫
V

0.5σijεijdV [42–44], a global quantity is com-
puted for problem in Fig. 3d as a function of N for β = {−2, 0, 2}. Applying
Clayperon’s theorem, strain energy per unit out-of-plane length (U) in the
annulus can be expressed as [42–44],

U =
r1
2

∫ 2π

0

[−p1(θ)ur(r1, θ)− q1(θ)uθ(r1, θ)]dθ. (39)
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Calculation as described in sub-section 4.3 and the current section is carried
out for different N and strain energy per unit out-of-plane length (U) via
Eq. 39 is computed. The result of the exercise is plotted in Fig. 11 as a
semi-log plot for {−2, 0, 2} superimposed with the result from [41] for β = 0.
It is evident from Fig. 11, that the present method with value of N > 50 will
lend reasonably accurate solution for field quantities in annulus subjected
to MBCs of the type shown in Fig. 3d except possibly in and around the
singular points.

6. Conclusions

The present work proposes a novel semi-analytical technique to calcu-
late stress and displacement field in a linear elastic, isotropic, functionally
graded annulus while being subjected to mixed boundary conditions. Shear
modulus is assumed to exhibit power-law variation with radius while the
Poisson’s ratio is assumed constant. Planar infinitesimal deformation is as-
sumed under quasi-static conditions and in the absence of body force. The
salient features of the current technique comprises of two major steps. In
the first step, closed form expression for stress and displacement field in the
annulus is derived for terms in the periodic Fourier series in angular variable
(θ) as radial and tangential loading at inner and outer radius of annulus.
The expressions are coded in the form of MAPLE© functions. In the second
step, the small strain-displacement relationship in polar co-ordinates is ex-
ploited to rewrite the mixed boundary conditions in terms of displacement
and its gradients. Having the boundary conditions expressed solely in terms
of displacement all along the annulus boundary allows use of orthogonality
principle leading to a system of linear equations. The length of expressions
in the first step scales with the number of terms dealt in Fourier series and
becomes unmanageable if handled all at once. Hence in practice, the pro-
cess of assembling solution corresponding to all the Fourier terms followed
by orthogonality is reversed. The versatility of the technique is thoroughly
demonstrated through three examples of traction boundary value problems
and one mixed boundary value problem. As compared to numerical meth-
ods like finite element method, boundary element method, which can handle
complicated material response and any geometry, the current method deals
with a specific geometry and material response but scores in terms of semi-
analytical nature of solution and savings in computational space and time.
In the analytical domain, technique like complex variable method offers an
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extremely powerful means in Elasticity to handle boundary conditions of all
kinds over a variety of planar geometries but not on annulus. In case of
mixed boundary value problem, the semi-analytical nature of the current
work prohibits the clear deduction of nature of singularity but its presence
and location can be unambiguously deciphered through the high frequency
and high amplitude oscillations in the obtained solution, which is nonetheless
accurate elsewhere in the annulus. The present work thus serves as a feasible
option to solve boundary value problems over power-law functionally graded
linear elastic annulus. Efforts are ongoing to apply the present approach
to crack problems in annulus made up of power-law functional grading.
Lastly, the assumption of constant Poisson’s ratio used in the present work

can be relaxed without sacrificing the semi-analytical nature if the spatial

variation is power-law with specific exponent as done in [18, 35, 52] .
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Figure 1: Flow chart for computing Airy stress function and planar stress and displacement
components 27
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Figure 2: Flow chart of solution methodology for solving Mixed BVP in power-law graded
linear elastic circular annulus (e.g. See Fig. 3d)
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(a) (b)

(c)
(d)

Figure 3: Functionally graded (FG) annulus of inner radius r1 and outer radius r2 made
up of linear elastic isotropic material with constant Poisson’s ratio ν and shear modulus
µ(r) varying radially as M(r/r2)β , where β is the inhomogeneity parameter and M is the
shear modulus at r = r2. (a) Equal and opposite arcs along the inner surface r = r1
symmetric about x-axis and subtending an angle 2α, subjected to uniform pressure p, (b)
pair of equal and diametrically opposite horizontal point force per unit out-of-plane length
F acting normal to the inner surface r = r1, (c) equal and opposite arcs symmetric about
x-axis and subtending an angle 2α being subjected to tangential traction q1 along the inner
surface r = r1 and q2 = q1(r1/r2)2 in the opposite sense along the outer surface r = r2,(d)
inner radius r = r1 is subjected to radial traction p1(θ) and tangential traction q1(θ) while
the outer radius r = r2 is subjected to mixed boundary conditions i.e. displacement is
constrained in the region −α < θ < α and the remaining portion α < θ < 2π − α is
traction free.
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(a) (b)

(c) (d)

Figure 4: Comparison of in-plane component of (a) stress σr, (b) stress σθ, (c) stress σrθ,
(d) displacement {ur, uθ}, along the radial path inclined at an angle of 21.36o with respect
to the x-axis as obtained from the present work (continuous line) and Abaqus based FE
solution (circular markers) for a power-law FG annulus (Eq. (1)) subjected to loading
depicted in Fig. 3a under plane stress deformation. The pertinent numerical values are
p = 1, α = π/4,M = 0.385, r1 = 0.5, r2 = 1, ν = 0.3, β = 2, N = 100.
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(a) (b)

Figure 5: Comparison of tangential component of (a) stress σθ and (b) displacement uθ,
along the radial path coinciding with x-axis (θ = 0) as obtained from the present work
(continuous line) and Abaqus based FE solution (circular markers) for a power-law FG
annulus (Eq. (1)) subjected to loading depicted in Fig. 3b under plane stress deformation.
The pertinent numerical values are F = 1,M = 0.385, r1 = 1, r2 = 2, ν = 0.3, β = −2, N =
400.

(a) (b)

Figure 6: Comparison of (a) stress component σθ and (b) displacement components
{ur, uθ}, along the inner radius r = r1 as obtained from the present work (continuous
line) and Abaqus based FE solution (circular markers) for a power-law FG annulus (Eq.
(1)) subjected to loading depicted in Fig. 3b under plane stress deformation. The pertinent
numerical values are F = 1,M = 0.385, r1 = 1, r2 = 2, ν = 0.3, β = −2, N = 400.
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Figure 7: Comparison of stress component σrθ along the radial path coinciding with x-
axis (θ = 0) as obtained from the present work (continuous line) and Abaqus based FE
solution (circular markers) for a power-law FG annulus (Eq. (1)) subjected to loading
depicted in Fig. 3c under plane stress deformation. The pertinent numerical values are
α = π/6, r1 = 2, r2 = 4, β = 1.5,M = 0.385, ν = 0.3, N = 100.
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(a) (b)

(c) (d)

Figure 8: Effect of inhomogeneity parameter β on the variation of stress components
(a) σr, (b) σθ, (c) σrθ, (d) σθ after application of Lanczos filtering [41], along the outer
radius r = r2 for a power-law FG annulus subjected to loading depicted in Fig. 3d
under plane stress conditions. The requisite details are p1(θ) = sin(3θ) + cos(2θ), q1(θ) =
cos(3θ) + sin(2θ), ν = 1/3,M = 3/8, α = π/4, r1 = 0.5, r2 = 1, N = 250. FE result implies
calculations carried out in commercial Finite element software ABAQUS.
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(a) (b)

Figure 9: Effect of inhomogeneity parameter β on the variation of displacement compo-
nents (a) ur, (b) uθ, along the outer radius r = r2 for a power-law FG annulus subjected
to loading depicted in Fig. 3d under plane stress conditions. The requisite details are
p1(θ) = sin(3θ) + cos(2θ), q1(θ) = cos(3θ) + sin(2θ), ν = 1/3,M = 3/8, α = π/4, r1 =
0.5, r2 = 1, N = 250. Singh2019 denotes the result for homogeneous annulus (β = 0)
from the work of Singh and Bhandakkar [41]. FE result implies calculations carried out
in commercial Finite element software ABAQUS.
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(a) (b)

(c)

Figure 10: Effect of inhomogeneity parameter β on the variation of (a) tangential stress σθ,
(b) radial displacement ur, (c) tangential displacement uθ, along the inner radius r = r1
for a power-law FG annulus subjected to loading depicted in Fig. 3d under plane stress
conditions. The requisite details are p1(θ) = sin(3θ)+cos(2θ), q1(θ) = cos(3θ)+sin(2θ), ν =
1/3,M = 3/8, α = π/4, r1 = 0.5, r2 = 1, N = 250. Singh2019 denotes the result for
homogeneous annulus (β = 0) from the work of Singh and Bhandakkar [10]. FE result
implies calculations carried out in commercial Finite element software ABAQUS.
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(a)

Figure 11: Variation of strain energy per unit out-of-plane length (U) with respect to the
number of terms N in the periodic fourier series (Eq. 8) as a function of inhomogeneity
parameter β for a power-law FG annulus subjected to loading depicted in Fig. 3d un-
der plane stress conditions. The requisite details are p1(θ) = sin(3θ) + cos(2θ), q1(θ) =
cos(3θ) + sin(2θ), ν = 1/3,M = 3/8, α = π/4, r1 = 0.5, r2 = 1, N = 250. Singh2019 de-
notes the result for homogeneous annulus (β = 0) from the work of Singh and Bhandakkar
[41].
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7. Appendix A: Modelling of FGM using ABAQUS

Usually the commercially available finite element programs doesnot offer
in-built ready-made module to model FGMs. But the software programs
can account for temperature dependent material properties. So the spatial
variation intended for material properties is assigned to temperature and the
material properties are made temperature dependent. Thus indirectly, the
desired variation in material properties with spatial co-ordinates is acheived
[50]. In this work, this technique is implemented in ABAQUS for shear mod-
ulus µ via assignment of temperature field in annulus which varies with radius
as per Eq. 1. Note that the assigned temperature field is fictitious and hence
the associated undesirable thermal deformation and stresses is prevented by
enforcing the coefficient of thermal expansion to zero value.
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synthetic â€˜brick and mortarâ€™composites, Journal of the Mechanics
and Physics of Solids (60) (8) (2012) 1545–1560.

[4] R. W. M. Niino, T. Hirai, The functionally gradient materials, Journal
of the Japan Society for Composite Materials (13) (6) (1987) 257–264. .
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Closed form stress, displacement in power-law graded annulus for
periodic loading

Semi-analytical stress-displacement computation in annulus subjected to mixed BCs

Potential  to  offer  computationally  efficient  answer  to  fracture,
material tailoring
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