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Abstract

This study explores the performance of custom Convolutional Neural Network (CNN) archi-
tectures for both binary and multiclass skin disease classification, utilizing datasets sourced
from Kaggle and Google. Images of ringworm and healthy skin were used, resized to
224 x 224 pixels, and augmented with techniques such as flipping and rotation to address data
limitations. We experimented with two dataset splits (80:20 and 70:30) and compared our cus-
tom CNN'’s performance against State-of-the-Art (SOTA) models and Vision Transformers
(ViTs). For binary classification, our custom CNN architecture included four convolutional
layers (32, 64, and 128 filters in successive blocks) with ReLU activation after each convo-
lutional layer, followed by max-pooling layers and dense layers, and a final softmax output.
This model achieved 98.9% accuracy, demonstrating strong performance in distinguishing
ringworm from healthy skin. For the multiclass (23-class) classification task, we adapted the
CNN architecture with added class frequency-based weights and achieved 35.23% accuracy,
illustrating the challenges in multi-class dermatological classification. Our results indicate
the practical applicability of a custom CNN, modified to incorporate class frequency balanc-
ing, for dermatological contexts, while highlighting the potential and limitations compared
to SOTA architectures and ViTs in skin disease classification.

Keywords Skin infections - Dermatology - Deep learning - Convolutional neural network -
Classification

1 Introduction

Skin diseases are a significant global health concern, affecting millions of people worldwide
[1]. Among these conditions, ringworm, a common fungal infection, poses a particular chal-
lenge due to its contagious nature and potential for misdiagnosis [2]. Ringworm is caused
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by dermatophytes, leading to ring-shaped, scaly, and itchy lesions [3]. Although not lethal,
its highly contagious nature makes it a public health concern, particularly in close-contact
settings like schools and gyms. While treatable with antifungal medications, delayed or inac-
curate diagnosis can lead to complications, such as secondary infections [4], especially in
immunocompromised individuals [5].

The adoption of Al and ML has revolutionized dermatological diagnostics by significantly
enhancing accuracy and efficiency in detecting skin conditions [6]. These technologies,
especially through the application of deep learning and Convolutional Neural Networks
(CNNG5) [7], have outperformed traditional diagnostic methods in image analysis, provid-
ing dermatologist-level accuracy in identifying various skin diseases and supporting clinical
decision-making processes [8],[9]. In recent years, deep learning has revolutionized the field
of artificial intelligence, particularly in image analysis tasks. Unlike traditional machine
learning techniques, which often require manual feature extraction, deep learning models
and CNNs automatically learn and extract complex patterns and features directly from the
raw image data [10]. This capability is crucial in dermatological diagnostics, where subtle
differences in texture, color, and shape play a significant role in distinguishing between vari-
ous skin conditions [11]. CNNs are specifically designed to handle visual data, making them
ideally suited for the intricate task of skin disease classification [12].

By leveraging their hierarchical feature extraction capabilities, our study aims to demon-
strate how CNNs can achieve a higher level of accuracy and robustness compared to
conventional machine learning methods, ultimately leading to more reliable and efficient
diagnostic tools in dermatology. This study focuses on the application of CNNs in the classi-
fication of ringworm and healthy skin images, as well as the broader task of multi-class skin
disease classification.

The main contributions of this study are:

1. Development of a Custom CNN for Skin Disease Classification: This study presents
a custom CNN architecture designed to classify skin conditions in both binary (ring-
worm vs. healthy skin) and multi-class settings, with the primary objective of creating a
robust model that can assist healthcare professionals in early detection and diagnosis. By
leveraging deep learning techniques, the model aims to reduce diagnostic errors, improve
patient outcomes, and enhance resource efficiency in dermatology.

2. Analysis of Multi-Class Classification Challenges: A comprehensive analysis of chal-
lenges specific to multi-class skin disease classification is provided, focusing on class
imbalance, interclass visual similarities, and intraclass variability. These insights are
valuable for addressing limitations in automated dermatological diagnosis.

3. Benchmarking Against State-of-the-Art Models: The custom CNN model is com-
pared with state-of-the-art approaches, highlighting its strengths and areas for further
improvement. This comparison establishes a baseline for future research in automated
skin disease diagnosis using deep learning techniques.

Our study utilizes a dataset comprising ringworm images sourced from Kaggle [13], [14] and
healthy skin images obtained from Google [15]. To address the limited size of the dataset, we
employ data augmentation techniques to enhance the model’s generalization capabilities. The
custom CNN architecture is designed to extract relevant features from skin images and learn
complex patterns that distinguish between different skin conditions. By comparing the per-
formance of our model in binary and multi-class classification tasks, we aim to gain insights
into the scalability and adaptability of the approach for real-world clinical applications. This
research contributes to the growing body of work on Al-assisted dermatology and explores
the potential of deep learning in revolutionizing skin disease diagnosis.
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The paper is organized as follows: Section II offers a literature review on the automated
classification of skin diseases. Section Il explains the methodology used in this study. Section
IV outlines the results obtained. Section V discusses the findings, and Section VI concludes
the study.

2 Literature review

Effectively diagnosing skin infections is crucial in dermatology, as accurate and prompt
identification leads to improved patient outcomes [16]. Researchers have explored various
feature extraction techniques to enhance the accuracy of skin disease classification.

Sreedhar et al. [17] conducted a comparative study of traditional and modern image pro-
cessing techniques for skin cancer detection, highlighting the importance of feature extraction
and image segmentation. Similarly, Wei et al. [ 18] proposed an automated skin cancer detec-
tion model based on ensemble lightweight deep learning networks, where feature extraction
modules are essential for lesion classification. Maniraj et al. [19] employed a combination of
Genetic Algorithm and Deep Learning Neural Network for dermoscopic image classification,
achieving high accuracy across different datasets. These studies emphasize the effectiveness
of feature extraction techniques, especially when combined with diverse classification algo-
rithms.

Recent research has increasingly focused on leveraging deep learning algorithms for skin
disease classification. Alam et al. [20] highlighted the efficiency of deep learning in skin
disease detection. Obayya et al. [21] introduced a deep learning technique utilizing multi-
attention fusion for skin cancer diagnosis, demonstrating the growing application of Artificial
Intelligence in dermatology. Anggriandi et al. [22] compared CNNs with MobileNet architec-
ture and CNN-SVM methods for classifying human skin diseases, suggesting that integrating
CNN s for feature extraction with SVM for classification can be an effective strategy. Deep
learning, particularly CNNs, have revolutionized the field of skin disease classification. While
pre-trained models offer a starting point, custom CNN architectures can be tailored to achieve
superior performance in both binary (healthy vs. disease) and multi-class (multiple diseases)
classification tasks.

Custom CNN architectures offer flexibility in addressing the challenges posed by imbal-
anced datasets. A recent study by Allugunti et al.[23] proposed a Machine Learning Model
for Skin Disease Classification using a custom CNN that achieved high accuracy. Another
approach by Wei et al. [24] combined DenseNet and ConvNeXt architectures, demonstrating
promising results for multi-class classification.

The design choices within these architectures significantly impact performance. Factors
like network depth, activation functions, and the use of techniques like data augmentation
and dropout layers all influence the model’s ability to learn discriminative features from
skin lesion images. Several studies explore these design considerations, such as CNN-based
approaches by Sazzadul et al. [25].

Biasi et al. [26] conducted a detailed analysis of key CNN architectures for detecting
melanoma in clinical images. Emphasizing the need to minimize the False Negative Rate
(FNR) in CAD systems, they adapted popular models like VGG16, AlexNet, DenseNet,
InceptionV3, and others for melanoma classification using the MED-NODE dataset, which
contains 170 clinical images. VGG16 and AlexNet emerged as the top performers in reducing
FNR, with 0.07 and 0.13, respectively. AlexNet achieved an accuracy of 89%, sensitivity of
87%, and specificity of 90%, while VGG16 showed lower specificity (59%) but reasonable
sensitivity (82%). These results underscore VGG16 and AlexNet’s suitability for developing
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CAD systems for melanoma diagnosis. Yadav et al. [27] reviewed 45 studies on skin disease
detection from 2021 to 2023, highlighting the increasing role of ML and DL in healthcare.
They found that 32 studies focused on deep learning, 11 on traditional machine learning,
and 2 used hybrid approaches. The review covered key models, datasets, and metrics, noting
challenges like handling noisy data and accurately capturing symptoms. This survey provides
researchers with valuable insights into current trends and challenges in using ML and DL
for skin disease detection. Biasi et al. [28] proposed a novel CNN architecture design using
genetic algorithms for melanoma detection. By allowing network configurations to evolve
over generations, they optimized the CNN for the ISIC dataset, achieving 94% accuracy,
90% sensitivity, 97% specificity, and 98 % precision. This hybrid approach demonstrated the
effectiveness of genetic algorithms in automating CNN design without manual intervention,
paving the way for more efficient and accurate melanoma classification.

Sadik et al. [29]address challenges in skin disease recognition due to low c ontrast and high
similarity between conditions. They use CNN-based architectures, specifically MobileNet
and Xception, in a computer vision system for improved disease recognition, achieving
96% and 97% accuracy, respectively. The study benchmarks against CNNs like ResNet50
and InceptionV3, demonstrating the effectiveness of transfer learning and data augmen-
tation. They also propose a web-based framework for real-time diagnostics. Schielein et
al. [30] explore CNNs for outlier detection in non-melanoma dermatological conditions,
evaluating models like InceptionV3, Xception, and ResNet50 on datasets curated by der-
matologists. Testing on 4,051 clinical images, they achieved high accuracies, notably 100%
for onychomycosis. The study highlights that expert data selection enhances model accu-
racy, offering insights for training dermatology Al systems. Hossain et al. use an ensemble
approach combining deep learning models (e.g., MobileNetV2, ResNet50) for skin cancer
detection. Using the Max Voting Ensemble Technique, they achieved 93.18% accuracy on
the ISIC 2018 dataset, improving upon individual model performance. This method supports
healthcare professionals in precise skin cancer diagnosis, validated on HAM 10000 for robust-
ness. Perez et al. [31] propose a CNN model for melanoma diagnosis optimized by genetic
algorithms to select ensemble members. This approach combines model features, improving
prediction accuracy and generalization, with an 11-13% performance boost across sixteen
datasets. The method leverages transfer learning, data augmentation, and CPU-efficient seg-
mentation, presenting a resource-friendly diagnostic tool.

Abbas et al. [32] introduce Assist-Dermo, a lightweight SVT-based system for classifying
nine skin lesion types. Utilizing depthwise separable CNN layers, it achieves 95.6% accuracy
with enhanced efficiency. Tested on datasets like HAM 10000, the model outperforms other
methods and provides a practical tool for dermatologists, addressing class imbalance with
data augmentation and image preprocessing.

Yang et al. [33] propose a novel ViT model specifically designed for skin cancer clas-
sification. Recognizing the difficulty in distinguishing types of skin cancer due to visual
similarities, especially in early stages, they present a four-block approach aimed at enhanc-
ing classification accuracy in clinical skin images. The model leverages transfer learning
by pretraining on the ImageNet dataset and fine-tuning on the HAM 10000 dataset. Experi-
mental results demonstrate that the model achieves a high classification accuracy of 94.1%,
outperforming the current state-of-the-art model, Inception-ResNet-V2 with soft attention,
on the same dataset. The model also performs better on the Edinburgh DERMOFIT dataset
than baseline models, indicating its effectiveness in skin cancer classification.

Evaluating these architectures requires careful consideration of appropriate metrics. Accu-
racy, precision, recall, F1-score, and AUC-ROC curves are all commonly used to assess the
model’s effectiveness in identifying skin diseases.
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Current research suggests that custom CNN architectures can outperform pre-trained
models in certain scenarios. However, there’s still room for improvement. Future directions
include addressing limited datasets, enhancing model interpretability, and developing archi-
tectures optimized for mobile or resource-constrained environments.

3 Methodology

This section describes the methodology for this study.

Figure 1 shows the block diagram that illustrates the sequential steps involved in our deep
learning model for skin disease classification. First, the Dataset is sourced and organized
into labeled categories. The Data Pre-processing stage includes image resizing, normaliza-
tion, and augmentation to improve the model’s generalizability by introducing a variety of
transformations. Finally, the processed images are fed into a CNN Model, which automat-
ically extracts features and learns patterns through a series of convolutional, pooling, and
fully connected layers to classify images into respective disease categories. For binary clas-
sification, the model distinguishes between ringworm and healthy skin, while in multiclass
classification, it categorizes images into one of the 23 identified skin disease classes.

3.1 Dataset

In our study, to ensure reproducibility and consistency of results across different runs, we set a
seed value of 123 for all random operations. By fixing this seed value, we aimed to standardize
the behavior of operations involving randomness, such as data splitting, data augmentation,
and model initialization. This practice helps in maintaining the same experimental conditions,
enabling other researchers to reproduce our findings reliably and verify the outcomes using
the same settings. For the binary classification task, two sets of images were utilized:

1. images of Ringworm (tinea corporis) were obtained from a dataset available on Kaggle
[14], which has been accessed and utilized by a few researchers [34], [35] and

2. images of healthy skin were sourced from Google. These images were compiled and
organized into a new dataset hosted on Kaggle [15], ensuring consistency and availability
for future experiments.

For the multiclass classification task, a broader dataset was sourced from Dermnet, also
available on Kaggle [13]. This dataset, widely used by several researchers for skin disease
classification tasks, [7], [36] contains a diverse range of skin conditions. It enabled the devel-
opment of a robust multiclass classification model. The dataset comprises images of various
dermatological conditions, providing a comprehensive basis for classifying multiple skin
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Fig. 1 Block diagram representing the end-to-end workflow: Dataset acquisition, Data Pre-processing for
enhanced feature learning, and CNN-based classification model
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diseases, including tinea corporis, psoriasis, eczema, and other visually similar conditions.
Table 1 presents the distribution of the images in the Dermnet data sourced from Kaggle.

3.2 Dataset expansion

Initially, model training and evaluation were performed using a subset of the Dermnet dataset,
consisting of approximately 4,590 images across various skin conditions. This subset allowed
for preliminary model validation and provided initial insights into classification performance.
However, recognizing the limitations posed by a smaller dataset in terms of representational
diversity, we subsequently expanded the experiments to utilize the entire Dermnet dataset,
encompassing over 24,829 images. This expansion provided a broader range of examples per
class, enhancing the model’s exposure to intra-class variability and enabling a more robust
training process. Consequently, the model was better equipped to generalize across the diverse
cases within the full dataset, leading to improved accuracy and performance stability across
different skin conditions. For reproducibility, the experimentation details are provided in the
Colab Notebook, and the full dataset analysis can be accessed in the GitHub Repository.

3.3 Data pre-processing

To prepare the dataset for training, we applied a series of pre-processing steps as follows:

1. Image Resizing: All input images were resized to a uniform dimension of 224 x 224
pixels to ensure consistency across the dataset. This resizing was necessary for several
reasons:

e to align with standard input dimensions used by state-of-the-art pre-trained models
such as VGG19, ResNet, and Inception, which are designed to work with images of
this size;

e to maintain consistency and reduce variability during training and evaluation; and

e to optimize computational efficiency, as using a fixed image size of 224 x 224 strikes
a balance between preserving sufficient image detail and minimizing memory usage
during training. This transformation helps the models extract relevant features while
keeping the computational requirements within practical limits.

2. Normalization: Pixel values were scaled to the range [0, 1] by dividing by 255. This nor-
malization step was essential for enhancing model convergence and overall performance.

3. Data Augmentation: To increase data variability and reduce overfitting, a range of aug-
mentation techniques was employed, including random rotations, width and height shifts,
and horizontal flips. These augmentations improved the model’s ability to generalize
effectively to new data.

4. Data Splitting: The dataset was divided into training, validation, and test sets. The training
set was augmented in real-time, while the validation and test sets were used to monitor
the model’s performance without augmentation. During training, real-time data augmen-
tation was employed, where augmentation transformations were applied dynamically to
each batch of images, enhancing variability without increasing dataset storage require-
ments.

Figure 2 depicts the data pre-processing pipeline consisting of several critical steps aimed
at optimizing image input for skin disease classification. Image Resizing is performed to
standardize all images to a dimension of 224 x 224, aligning with the input requirements
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Table 1 Class distribution in dermnet dataset

Class Train Valid Test
Acne and Rosacea Photos 831 328 312
Actinic Keratosis Basal Cell Carcinoma and other Tumors 1140 425 288
Atopic Dermatitis Photos 489 147 120
Bullous Disease Photos 441 190 112
Cellulitis Impetigo and other Bacterial Infections 287 122 72
Eczema Photos 1235 371 309
Exanthems and Drug Eruptions 403 136 101
Hair Loss Photos Alopecia and other Hair Diseases 231 84 60
Herpes HPV and other STDs Photos 404 131 102
Light Diseases and Disorders of Pigmentation 566 237 143
Lupus and other Connective Tissue diseases 416 162 102
Melanoma Skin Cancer Nevi and Moles 463 139 116
Nail Fungus and other Nail Disease 1040 312 261
Poison Ivy Photos and other Contact Dermatitis 253 100 61
Psoriasis pictures Lichen Planus and related diseases 1383 531 347
Scabies Lyme Disease and other Infestations and Bites 398 169 102
Seborrheic Keratoses and other Benign Tumors 1362 530 343
Systemic Disease 596 217 152
Tinea Ringworm Candidiasis and other Fungal Infections 1300 390 325
Urticaria Hives 212 64 53
Vascular Tumors 482 145 121
Vasculitis Photos 410 166 105
Warts Molluscum and other Viral Infections 1086 326 272
Total 15428 5422 3979

of advanced CNN models like VGG19, ResNet, and Inception. This step is followed by
normalization which scales pixel values to the [0, 1] range. Various Data Augmentation
techniques, including random rotations, shifts, and horizontal flips, are applied for Data
Augmentation. Finally, the dataset is systematically splitinto training, validation, and test sets.

Training

Testing

Validation

Image Resizing Normalization Augmentation Data Splitting
224 X224

Fig.2 Data Pre-processing Pipeline for Skin Disease Classification: This pipeline encompasses image resizing,
normalization, data augmentation, and dataset splitting
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Table 2 summarizes the Data Augmentation techniques used in this study.

3.4 Model architecture

We designed a custom CNN architecture for both binary and 23-ary classification tasks.
Our custom CNN architecture was designed to extract complex patterns from input images
for accurate classification. All images were resized to 224 x 224 pixels, a standard size
widely used by ImageNet-based CNNs like VGG19, ResNet, and EfficientNet. This choice
ensures compatibility with pre-trained models and allows a fair comparison with state-of-
the-art architectures. While built from scratch to address the specific needs of skin disease
classification, our custom CNN leverages these established practices for consistent feature
extraction and optimal performance.

The architecture begins with an initial convolutional layer that serves as a basic feature
extractor, followed by progressively deeper layers that capture increasingly complex features.
Each convolutional layer is followed by an activation function and a max-pooling layer to
enhance computational efficiency and focus on prominent attributes. Dropout layers are
incorporated to prevent overfitting, and the network culminates in a dense softmax layer for
multi-class classification.

3.4.1 Detailed layer-wise architecture

1. Initial Convolutional Layer:

The network starts with a convolutional layer containing 32 filters of size 3 x 3, which
is applied to the input image I to capture low-level features like edges and textures. The
convolution operation is defined as:

2 2
0:1G, /)= > Ti+m, j+n) Ki(m,n) M

m=0n=0

where K represents the kernel for this layer. The ReLU activation function is then applied
to introduce non-linearity:
ReLU(x) = max(0, x) ()

A 2 x 2 max-pooling layer follows, defined as:

P j)=,_max OWi-2+m. j-24n) 3)

<m<2,0<n<

2. Intermediate Convolutional Layers:

Table 2 Configuration of data
augmentation methods used in
the image classification pipeline

Parameter Value

@ Springer
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Height Shift Range 0.2 (20% of height)
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The network progresses with a second convolutional layer of 64 filters (size 3 x 3) to
detect intricate patterns, such as lesion contours. This operation is defined as:

2 2
023, ) =D D Pili+m, j+n)-Ka(m,n) “

m=0n=0

Followed by ReLU activation and max-pooling:

Pz(i,j):0 max 020 -24m,j-24n) (5)

<m<2,0<n<2

3. Deeper Convolutional Layers:
To capture high-level, abstract features such as lesion shapes and pigmentation variations,
two additional convolutional layers with 128 filters (size 3 x 3) are added:

2 2

03, ) =) > Pali+m, j+n) Ks(m,n) ©6)
m=0n=0

Pii.j)= _ max O3(-2+m.j-2+n) @
2 2

04(i. j) =D Y P3(i +m. j+n) Ky(m.n) (8)
m=0n=0

Py(i, j)=_ max  O4(i-2+4m, j-24n) )

4. Fully Connected Layers:
The output from the final convolutional layer is flattened:

v = Flatten(P4) (10)
This vector is then passed through a dense layer of 512 units with ReL.U activation:
h = ReLU(W,v + by,) (11)

where W), and by, are the weights and biases, respectively. A dropout layer with a rate of 0.5
is applied to prevent overfitting.

5. Output Layer:

For final classification, the dense output is passed through a softmax layer:

y = Softmax(W,h + b,) 12)

3.4.2 Hierarchical learning for feature extraction

The custom CNN architecture is designed to hierarchically extract features, progressing from
basic to complex patterns critical for accurate skin condition classification. Each layer plays
a specific role in learning visual attributes at varying levels of abstraction:

1. Low-Level Features: Initial layers (Conv2D with 32 filters) focus on detecting basic struc-
tures such as edges and textures, which form the foundational patterns. Applying ReLU
activation introduces non-linearity, enabling the network to capture essential variations
in surface textures across different skin types.
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2. Intermediate-Level Features: Middle layers (Conv2D with 64 and 128 filters) extract
more detailed structures like lesion borders, color transitions, and texture gradients.
Max-pooling layers reduce spatial dimensions while preserving key patterns, improv-
ing computational efficiency and enhancing focus on distinctive lesion attributes.

3. High-Level Features: Deeper layers (Conv2D with 128 filters) capture complex, disease-
specific patterns such as morphology, pigmentation, and intricate texture variations,
facilitating differentiation between visually similar conditions. These abstract features
provide a comprehensive understanding of each image.

4. Feature Integration via Fully Connected Layers: A dense layer with 512 neurons inte-
grates spatial and feature information from prior layers into a unified feature vector. A
dropout layer (rate of 0.5) prevents overfitting, supporting robust generalization.

5. Classification: The final softmax layer outputs a probability distribution, indicating clas-
sification confidence across skin condition classes. This hierarchical learning enables
the CNN to progressively refine feature maps, capturing nuanced visual cues vital for
diagnosis.

3.4.3 Key features extracted by the architecture

The architecture is specifically tailored to extract:

e Low-level features: Edges, textures, gradients, and basic shapes from the initial convo-
lutional layers.

e Intermediate features: Patterns, lesion borders, and regional texture variations indicative
of skin conditions in the subsequent layers.

e High-level features: Complex structures and color variations that differentiate among
multiple skin diseases, extracted by the deeper layers.

This hierarchical learning approach enables the model to capture a comprehensive range of
visual features, from basic structures to complex patterns that are critical for distinguishing
between different skin conditions, thereby enhancing its diagnostic accuracy.

3.4.4 CNN model parameter summary

The total number of learnable parameters has been optimized to ensure the model cap-
tures complex patterns while maintaining computational efficiency. This design balances
model complexity and parameter count to prevent overfitting, providing sufficient capacity
for effective learning in both binary and multi-class classification tasks. Table 3 summarizes
the learnable parameters of the custom CNN.
Total parameters: 29,070,983
Trainable parameters: 9,690,327
Non-trainable parameters: 0
Optimizer parameters: 19,380,656

Figure 3 shows the visual representation of the custom CNN architecture for both binary
and 23-class classification. For binary classification, the model distinguishes between two
classes: ringworm and healthy skin. The architecture includes multiple convolutional lay-
ers with ReLU activation functions, interspersed with max-pooling layers to reduce spatial
dimensions while retaining key features. Following the convolutional layers, a flattening
layer converts the 2D feature maps into a 1D vector, which is then passed through a dense
layer with 512 units and a dropout layer for regularization. The final output layer utilizes a
softmax activation function to provide probabilities for the two classes.
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Table 3 Learnable Parameters in the Custom CNN Architecture

Layer type Description Output shape Number of param-
eters

Conv2D 3x3 kernel, 32 filters (None, 222, 222, 32) 896

MaxPooling2D MaxPooling Layer (None, 111, 111, 32) 0

Conv2D 3x3 kernel, 64 filters (None, 109, 109, 64) 18,496

MaxPooling2D (None, 54, 54, 64) 0

Conv2D 3x 3 kernel, 128 filters (None, 52, 52, 128) 73,856

MaxPooling2D (None, 26, 26, 128) 0

Conv2D 3x3 kernel, 128 filters (None, 24, 24, 128) 147,584

MaxPooling2D (None, 12, 12, 128) 0

Flatten Reshaping Layer (None, 18432) 0

Dense Fully connected layer, 512 units (None, 512) 9,437,696

Dropout Regularization Layer (None, 512) 0

Dense (Output) NUM_CLASSES (Softmax) (None, NUM_CLASSES) S12 + 1) x

NUM_CLASSES

The same custom CNN architecture is adapted for 23-class classification, where the model
is trained to identify 23 different skin diseases. The structure remains consistent, with con-
volutional layers for feature extraction, max-pooling layers for dimension reduction, and a
dense layer for complex pattern learning. The key difference lies in the final output layer,
which produces probabilities across the 23 classes, enabling the model to classify a broad
range of skin diseases accurately.

The detailed architecture of the custom CNN is shown in Fig. 4. This figure exhibits
the type of each layer and its placement within the network. It begins with the input layer,
which accepts preprocessed images of specified dimensions. Following the input layer, the
network includes multiple convolutional layers (Conv2D) with ReL.U activation functions,
each responsible for detecting various features from the input images, paired with max-
pooling layers (MaxPooling2D) to reduce spatial dimensions and computational complexity
while preserving essential information.

512

Fully
MaxPooling + Connected
Conv 2D

12X12X128

MaxPooling + Conv 2D Connected
. 26X26x128
Tnput MaxPooling + Conv 2D
54x54x64
224x224x3 Conv 2D
112X 112X32

Fig. 3 Custom CNN architecture for 23-class skin disease classification, featuring Conv2D layers, max-
pooling, a dense layer with dropout, and a softmax output layer for class probabilities

@ Springer



Multimedia Tools and Applications

input: (224,224 3)
input: Input
output: (224.2243)
input: (224.2243)
conv2D: Conv2D
output: (111,111,32)
input: (111,111,32)
conv2D-1: Conv2D
output: (54,5469
input: (54,54.64)
conv2D_2: Conv2D
output: (26.,26,128)
input: (26.26,128)
conv2D_3: Conv2D
output: (12,12,128)
input: (26.26.128)
conv2D_4: Conv2D
output: (12,12,128)
input: (12,12,128)
flatten: Flatten
output: (1,18432)
input: (12,12,128)
dense_1: Dense
output: (1,18432)
input: (1,18432)
flatten: Flatten
output: (1,512)
input: (1,512)
dropout: Dropout
output: (1,512)
input: (1,512)
dense_2: Dense
output: <num_of_classes>

Fig.4 This sequence of layers diagram shows the sequence of layers in the custom CNN architecture for skin
disease classification, featuring four convolutional layers with ReLU activation and concluding with a softmax
layer for class probabilities
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The architecture progresses through a series of convolutional and max-pooling layers,
progressively increasing the number of filters to capture more complex features. The output
from the last convolutional layer is flattened into a 1D vector, preparing it for the fully
connected dense layers. A dense layer with 512 units and ReL.U activation follows, helping
to learn high-level representations of the features, while a dropout layer with a 0.5 dropout
rate is included to prevent overfitting.

The final layer of the network is a dense layer with a softmax activation function, which
outputs the classification probabilities. The figure also details the input and output feature
sizes for each layer, providing a comprehensive view of the data transformation process
through the network. This architecture highlights the flow of data and the hierarchical feature
extraction process in the custom CNN, ensuring clarity in understanding each layer’s role
and contribution to the overall model.

3.5 Modified CNN architecture

The modified CNN architecture incorporates several enhancements aimed at improving
feature extraction, regularization, and model generalization. Key modifications include the
addition of batch normalization, increased convolutional depth, distributed dropout layers,
and global average pooling. This revised architecture, designed to balance computational
efficiency with predictive performance, is described below.

1. Initial Convolutional Layers with Batch Normalization:

e The network begins with a sequence of convolutional layers of increasing filter sizes:
32, 64, 128, and 256. Each layer utilizes a (3, 3) kernel, ReLU activation, and is
followed by batch normalization. Batch normalization normalizes the activations
across the batch, stabilizing training, allowing higher learning rates, and helping
mitigate the problem of internal covariate shift.

2. Max-Pooling Layers and Distributed Dropout:

e Each convolutional layer is followed by a max-pooling layer with a (2, 2) pool size,
reducing spatial dimensions and retaining essential features. To further regularize the
network, a dropout layer (rate = 0.25) is applied after each pooling layer.

e By distributing dropout throughout the network, we effectively reduce overfitting
and improve generalization, especially given the limited size of available training
data. This approach allows the model to avoid dependency on specific neurons, thus
encouraging robust feature learning across all layers.

3. Increased Convolutional Depth:

e The model’s final convolutional layer increases the filter depth to 256, allowing the
network to capture more complex patterns within the data. This additional layer
provides a deeper, more abstracted representation of the features, which is especially
beneficial for handling variations in class features in large, multi-class datasets.

4. Global Average Pooling:

e The fully connected layers traditionally used in CNN architectures are replaced with
a Global Average Pooling (GAP) layer. GAP reduces each feature map to a single
value, capturing the spatially averaged information across each filter and drastically
reducing the number of trainable parameters.
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5. Fully Connected Layer and Final Classification:

e Following GAP, a fully connected dense layer with 512 units and ReLU activation
aggregates the learned global features. A dropout layer (rate = 0.4) further regularizes
the network, and the model’s final dense layer utilizes softmax activation with 23
output units, aligning with the number of target classes in the dataset.

This modified CNN design prioritizes stability, feature abstraction, and overfitting reduction
through batch normalization, dropout, and global average pooling.
Table 4 summarizes the sequence of layers of the Modified CNN architecture.

3.6 Class-weighted cnn architecture

We implemented the modified CNN trained with class weights to address the imbalanced
distribution of skin disease classes. This approach ensures that the model places greater
emphasis on minority classes, thereby enhancing its ability to learn meaningful features
across all categories. To mitigate the class imbalance, class weights were computed and
applied to the loss function during training. This technique assigns higher weights to classes
with fewer samples, ensuring that these classes contribute proportionally to the total loss.
Specifically, the class weights were calculated as follows:

. . total_samples
class_weight[i] = - (13)
num_classes x samples_per_class|i]

Table 4 Layer-wise architecture of the Modified custom CNN model with input and output shapes at each
layer

Layer Input Shape Output Shape Details

Input Layer (224, 224, 3) (224, 224, 3) RGB image

Conv2D (32 filters) (224,224, 3) (222,222, 32) 3 x 3 filters, ReLU activation
BatchNormalization (222,222, 32) (222,222, 32) Normalizes feature maps
MaxPooling2D (222,222, 32) (111, 111, 32) 2 x 2 pooling

Dropout (0.25) (111,111, 32) (111,111, 32) Regularization

Conv2D (64 filters) (111,111, 32) (109, 109, 64) 3 x 3 filters, ReL.U activation
BatchNormalization (109, 109, 64) (109, 109, 64) Normalizes feature maps
MaxPooling2D (109, 109, 64) (54, 54, 64) 2 x 2 pooling

Dropout (0.25) (54, 54, 64) (54, 54, 64) Regularization

Conv2D (128 filters) (54, 54, 64) (52,52, 128) 3 x 3 filters, ReLU activation
BatchNormalization (52,52, 128) (52,52, 128) Normalizes feature maps
MaxPooling2D (52,52, 128) (26, 26, 128) 2 x 2 pooling

Dropout (0.25) (26, 26, 128) (26, 26, 128) Regularization

Conv2D (256 filters) (26, 26, 128) (24, 24, 256) 3 x 3 filters, ReL.U activation
BatchNormalization (24, 24, 256) (24, 24, 256) Normalizes feature maps
MaxPooling2D (24, 24, 256) (12, 12, 256) 2 x 2 pooling

Dropout (0.25) (12, 12, 256) (12, 12, 256) Regularization
GlobalAveragePooling2D (12, 12, 256) (256,) Averages across each channel
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where i represents each class in the dataset. These weights were then used in the categorical
cross-entropy loss function, guiding the model to focus more on the underrepresented classes
during the training process.

3.7 Transfer learning with SOTA models

In this study, we employed transfer learning with SOTA deep learning models, specifically
VGG19, InceptionV3, DenseNet121, ResNet50, and EfficientNetB0. Each of these models
has demonstrated strong performance in image classification tasks and provides robust feature
extraction capabilities when used as a base model. Leveraging their pre-trained weights from
ImageNet, we aimed to adapt their knowledge to classify our dataset effectively.

Each SOTA model was modified to tailor it to the specific requirements of our dataset:

1. Loading Pre-trained Weights: Each model was initialized with pre-trained weights from
ImageNet to benefit from prior learning on a large, diverse dataset. This initialization
aids in transferring general visual features such as edges, shapes, and textures, which are
useful for classifying images in our dataset.

2. Freezing Base Layers: To preserve the learned features and prevent overfitting on our
relatively smaller dataset, the convolutional layers of each base model were frozen,
meaning their weights were not updated during training. Only the final classification
layers were trained on the new dataset. This approach allows the model to leverage high-
quality feature maps from the lower layers while focusing on adapting to the specific
classes in our dataset at the higher layers.

3. Adding Custom Classification Layers: On top of each base model, custom fully connected
layers were added to transform the output of the frozen layers into predictions for our
dataset. The following modifications were made to the top of each base model:

e A GAP layer was applied to reduce the feature maps from the base model. GAP
replaces the need for fully connected layers, reducing the risk of overfitting and the
model’s parameter count.

e A dense layer with 512 units and ReLLU activation was added as a high-level feature
extractor.

e A Dropout layer with a rate of 0.5 was included to mitigate overfitting by randomly
deactivating neurons during training. The final output layer is a softmax layer with
neurons equal to the number of classes in our dataset, allowing for multi-class clas-
sification.

3.8 Transfer learning with vision transformer

This work incorporates a custom VViT model as part of our transfer learning approach for
classifying skin disease images. The model architecture draws from the principles established
in Dosovitskiy et al.’s [37] where the authors demonstrate that transformer-based models,
typically applied in natural language processing, can be adapted effectively for visual recog-
nition tasks. The ViT model utilizes a transformer-based approach for image classification
by processing 16 x 16 patches instead of individual pixels, allowing for efficient pattern
recognition compared to traditional CNNS.

e Image Patching: Images are divided into 196 non-overlapping patches (for a 224 x 224
image), each projected into a 64-dimensional vector through a convolutional layer, which
reduces dimensionality for encoding.
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e Patch Encoding: The Patch Encoder flattens and encodes the patches with positional
embeddings to retain spatial information. A dense layer projects them into a fixed-
dimensional space.

e Transformer Blocks: The model features 8 transformer layers with 4 attention heads each,
incorporating:

— Multi-Head Self-Attention for learning relationships between distant patches.

— Feed-Forward Network (FFN) with a two-layer MLP, GELU activation, and Dropout
to prevent overfitting.

— Residual Connections to enhance gradient flow.

These components convert patch data into high-level features.

e Classification Head: A GAP layer aggregates features, followed by a dense layer with 512
units and GELU activation, and a final dense layer with 23 units (for class probabilities)
activated by softmax.

3.9 Training and evaluation

The model was trained using a batch size of 32 and run for 50 epochs. The Adam optimizer
was employed to minimize the categorical cross-entropy loss function. During training, we
monitored the accuracy and loss on both the training and validation sets. The performance
of the trained model was then evaluated on the held-out test set to assess its generalization
capabilities.

3.10 Experimental setup

The initial experiments were conducted on Google Colab, where we used an NVIDIA T4
GPU to train the model on a subset of the Dermnet dataset, focusing on rapid prototyping
and preliminary analysis. For the main experiments, including model architecture modifica-
tions, SOTA comparisons, and custom weight adjustments, we utilized a Jupyter Notebook
environment on a laptop with an NVIDIA RTX 4050 GPU. This setup allowed us to train on
the full dataset, perform comprehensive evaluations, and refine model parameters for optimal
performance.

3.10.1 Training configuration

The model was trained with a batch size of 32 for 50 epochs. We used the Adam optimizer for
training, which adjusts the learning rate dynamically during the training process. The Adam
optimizer is defined as:

Op1 =6, — (14)

(o4 A
A mt
VU +€
where 171, and ¥, are the estimates of the first and second moments of the gradients, respec-
tively.

3.10.2 Train-test split

The dataset was split into training and testing sets with a ratio of 80:20. This ensures that
the model is evaluated on unseen data, providing a reliable estimate of its performance. For
comparison, the model was also implemented using a 70:30 split.
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3.10.3 Evaluation metric

To thoroughly assess our model’s performance in multiclass skin disease classification, we
used multiple metrics beyond accuracy, including precision, recall, F1-score, and AUC-ROC.
These metrics help balance true and false predictions, minimizing both false positives and
false negatives, essential in medical diagnostics.

e Accuracy: Measures overall correct predictions:
True Positives (TP) + True Negatives (TN)

Accuracy = (15)
Total Samples

While accuracy gives an overall snapshot, it may be limited for imbalanced data.
e Precision: Indicates reliability in predicting positive cases:
True Positives (TP)

Precision = — — (16)
True Positives (TP) + False Positives (FP)

Precision is critical to minimizing unnecessary treatments.
e Recall (Sensitivity): Reflects the model’s ability to identify true positives:
True Positives (TP)

Recall = — ; 17)
True Positives (TP) + False Negatives (FN)

High recall reduces missed cases, essential in medical contexts.
e F1-Score: Balances precision and recall, especially useful for imbalanced datasets:

Precision x Recall
Fl-Score =2 X —— (18)
Precision + Recall
This metric is valuable when dealing with imbalanced datasets, as it considers both false
positives and false negatives in a single metric, providing a more balanced view of model
performance.
o False Negative Rate (FNR): Measures the proportion of actual positives incorrectly
classified as negatives, indicating missed detections:

False Negatives
FNR

= 19
False Negatives + True Positives (19

e AUC-ROC: Assesses the model’s ability to distinguish between classes across thresh-
olds. An AUC-ROC close to 1 indicates strong discriminatory power, crucial for robust
decision-making in medical applications.

4 Results

The custom-designed CNN demonstrated remarkable performance in the binary classification
task, achieving an accuracy of 98.9% in distinguishing between ringworm and healthy skin
images. This high accuracy suggests that the model has successfully learned to identify the
distinctive features of ringworm infections, potentially offering a valuable tool for rapid
screening and diagnosis in clinical settings. The strong performance in binary classification
can be attributed to several factors, including the effective data augmentation techniques
employed to expand the limited dataset, the carefully designed CNN architecture that captures
relevant features at multiple scales, and the clear visual distinctions between ringworm-
affected and healthy skin. These visual distinctions include characteristic ring-shaped lesions
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with raised, scaly borders contrasting with the uniform texture of healthy skin, reddish or
discolored patches in infected regions compared to normal skin tone, clear demarcation
between affected and unaffected areas with distinctive circular patterns, and the presence of
scaling, flaking, or crusting in ringworm lesions versus the smooth appearance of healthy
skin. These pronounced morphological differences provided strong discriminative features
for the CNN to learn from, contributing to its high classification accuracy.

However, when the same CNN architecture was applied to the more complex task of 23-
ary classification, encompassing a diverse range of skin conditions, the model’s performance
decreased significantly, achieving an accuracy of 35.23%. While this accuracy is substantially
higher than random chance (which would be approximately 4.35% for 23 classes), it indicates
the increased difficulty of differentiating among a larger number of skin diseases, many of
which may share similar visual characteristics. This drop in performance from binary to
multi-class classification highlights the challenges inherent in developing a single model
capable of accurately diagnosing a wide spectrum of dermatological conditions.

4.1 Binary classification

In the binary classification task, models were assessed based on their ability to distinguish
between fungal and non-fungal skin conditions. Key performance metrics-Accuracy, Preci-
sion, Recall, F1-Score, and False Negative Rate (FNR)-are presented in Table 5.

Confusion matrices Figure 5 presents the confusion matrices for the binary classification
models: Custom CNN and ViT. These matrices display the counts of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) for each model. The Custom
CNN matrix demonstrates a strong concentration of TPs and TNs, highlighting its accuracy
with minimal misclassifications. In contrast, the ViT confusion matrix shows a higher number
of FPs and a complete absence of TN, indicating challenges in distinguishing between classes
and a tendency to misclassify certain samples.

Training and validation accuracy and loss curves Figure 6 illustrates the training and
validation accuracy and loss curves for Custom CNN and ViT.

Summary of results

e For binary classification of skin fungal infections, Custom CNN is the best-performing
model, offering the highest accuracy, precision, recall, and F1-score. DenseNet121 also
delivers robust performance and is a strong alternative for this task.

e InceptionV3 provides a balanced approach, with slightly lower performance compared
to the top models but still offering a good compromise between precision and recall.

Table 5 Performance metrics for different models in binary classification

Model Accuracy Precision Recall F1-Score FNR

VGGI19 96.11% 96.15% 96.11% 95.70% 3.89%
EfficientNetBO 90.52% 81.95% 90.52% 86.02% 9.48%
InceptionV3 97.63% 97.59% 97.63% 97.53% 2.37%
ResNet50 90.52% 81.95% 90.52% 86.02% 9.48%
DenseNet121 98.14% 98.18% 98.14% 98.05% 1.86%
Custom CNN 98.82% 98.90 % 98.82% 98.84% 1.18%
Vision Transformer 90.52% 81.95% 90.52% 86.02% 9.48%

Bold signify our results of Custom and Improvised CNN
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Fig.5 Confusion Matrices for Binary Classification. (a): Using Custom CNN, (b): Using Vision Transformer

o EfficientNetB0, ResNet50, and Vision Transformer show potential in terms of recall, but
their lower precision requires optimization to make them more reliable for clinical or
practical applications, where minimizing false positives is crucial. These results demon-
strate the importance of selecting a model that not only maximizes accuracy but also
strikes an appropriate balance between precision and recall, depending on the specific

requirements of the task at hand.

4.2 Multiclass classification

For multiclass classification, models were evaluated across several skin disease categories.
Table 6 presents Accuracy, Precision, Recall, F1-Score, and FNR as percentages, highlighting

model performance across all classes.

Confusion matrices Figures 7, 8, 9 and 10 present the confusion matrices for the multiclass
classification model using Custom CNN, Modified CNN, Class Weighted CNN, and ViT

respectively.

®)

Fig. 6 Training and Validation Loss and Accuracy for Binary classification. (a): Using Custom CNN, (b):

Using Vision Transformer
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Table 6 Performance Metrics for Different Models in Multiclass Classification

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FNR (%)
VGGI19 17.59 9.75 17.59 10.51 82.41
EfficientNetBO 8.98 1.00 9.00 1.00 91.00
InceptionV3 13.19 7.98 13.19 6.74 86.81
ResNet50 8.72 0.76 8.72 1.40 91.28
DenseNet121 18.04 10.84 18.04 9.91 81.96
Custom CNN 33.88 35.20 33.88 31.58 66.12
Improvised CNN 35.23 41.22 35.23 35.81 64.77
Weighted CNN 20.36 34.50 20.36 20.74 79.64
Vision Transformer 7.16 4.00 7.00 2.00 93.00
70:30 Split 31.11 33.27 31.11 28.57 68.89

Bold signify our results of Custom and Improvised CNN

Training and validation accuracy and loss curves Figure 11 illustrates the training and
validation accuracy and loss curves for Custom CNN, Modified CNN, Class Weighted CNN,

and ViT.

AUC-ROC curves The ROC for the Modified CNN presented in Figure 12 demonstrates the
model’s performance in distinguishing between classes, with the area under the curve (AUC)
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Fig.8 Confusion Matrix for Multiclass classification using Modified CNN

providing a measure of classification accuracy. A higher AUC indicates strong predictive
capability, with the curve approaching the top-left corner reflecting the model’s effectiveness
in minimizing false positives and false negatives. This ROC analysis highlights the Modified
CNN’s ability to achieve a balance between sensitivity and specificity in classification tasks.

Analysis of results

e Custom CNN and Improvised CNN: The Custom CNN achieved a notable accuracy of
33.88%, while the Improvised CNN model performed slightly better, with a 35.23% accu-
racy and a higher F1-score, making it the most effective model in this multiclass task. The
reduced false negative rate in the Improvised CNN suggests better class differentiation,
contributing to overall performance gains.

e Class-Weighted CNN: With a 20.36% accuracy and relatively high precision, the Class-
Weighted CNN showed improved performance in minority classes due to the applied
weighting, though its recall and F1-score remain lower than the Improvised CNN.

e Other Models (VGG19, InceptionV3, DenseNet121, Vision Transformer): These models
exhibited lower accuracy and recall rates, reflecting challenges in distinguishing between
classes in this multiclass setup. Notably, ViT had a high false negative rate, indicating its
difficulty in handling multiclass distinctions within this dataset.

@ Springer



Multimedia Tools and Applications

Confusion Matrix

o)+ 1 o o 4 0100 0010606 01 00 0 12
~ |8 H 0 2 016 0 2 01 0 0 5 0010 1027 61 0 1 0 12 100
~ 726 1 ol 2 1 0 1 1 00 ofi8lo 5 16 0 2 2 3
m (3Bl 3 o8l 2 1 0o 2 o o o ool oG] 2BEBl1 1 25
« 23102 oS3l 1 o 1 o 1 o ofEl o o B3l o 1 FallG
m 9 5 2 0 0 1 10310 3 oo 6 280 2 0 13 80
w 6 1 2 0 0 1010 0 0 2 1 0 2 09 08 07 10 0 2
~ 00 00O 10200001 03050 3000 0
w 2 9 1 0 0 1 05 4 00 00 04 07 110 1 3 0 13
o Bl3 12 12 o1 2 0 a4 01 1 o EBlol 182 0 o 1 o
e 5 2 01 0ofEl1 51 0o/5 0 3 of1oo 34 10 06
~ 2 9 00 00 2 3 00 018001 0217 0 20 4
5 3 0 0 0 6 09 00 0 0 o8 o a4 2/5 0 1 05 |
3 4 1001200100001 2 30702200 1 3
<« 13101 0 ofl 111 5 00 2 o0 1036 o Bl 1 1 o - 4
w 50503 1 o2l 3 2 0 o o o 1 off6h 2 3 ol 2 2 o7
© 1016 1 0 0 100 1 101 0 0 6 0 0 14 0 151 4 o BA
~ 41 1 4 07 1100006 0130 7 1828 2 2 1 4
@ 1410 2 3 02 17 12004 o0/3o0 22 oFBlo 1115 L 5
o 1 0 000 4 40010000501 2 8 30 1 2
Q 9 7 100 4 0 111 01 2 050100 2 110 216
g 1/5 2 o ofll3 0o o0 2 0 0 1 o 0 2 o 4 2 3l
s 21 2 ofElr 3 1 0 1 10 o7 228307 2 E
0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ’

Predicted Label

Fig.9 Confusion Matrix for Multiclass classification using Class-Weighted CNN

4.3 Model interpretability

To enhance the interpretability of our custom CNN model, we incorporated Grad-CAM analy-
sis, which provides visual explanations of the model’s predictions by highlighting the specific
regions of the input images that influence the decision-making process. This technique helps
in visualizing the attention areas where the model focuses while classifying different skin con-
ditions. The Grad-CAM visualizations in our study revealed that the network predominantly
concentrates on clinically relevant areas in the images, thereby increasing the confidence in
the model’s predictions. These insights demonstrate the potential of Grad-CAM to support
dermatologists in verifying the model’s decisions, offering an additional layer of transparency
to the automated classification process. Figure 13 presents the heatmaps across various mod-
els.

5 Discussion

This study highlights both the potential and limitations of custom CNNss for skin disease clas-
sification in dermatology. The model’s high accuracy in binary classification (98.9%) sharply
contrasts with its performance in 23-class classification (35.23%), emphasizing the challenges
of distinguishing diverse skin conditions. The Dermnet dataset poses further issues, as class
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Receiver Operating Characteristic (ROC) Curve

= ® micro-average ROC curve (area = 0.86)
® ® macro-average ROC curve (area = 0.84)
=== ROC curve of class Acne and Rosacea Photos (area = 0.90)
== ROC curve of class Actinic Kefatosis Basal Cell Carcinoma and other Malignant Lesions (area = 0.82)
=== ROC curve of class AtopiC Dermatitis Photos (area = 0.82)

ROC curve of class Bullous Disease Photos (area = 0.79)
= ROC curve of class Cellulitis impetigo and other Bacterial Infections (area = 0.79)
=== ROC curyeof class Eczema Photos (area = 0.83)

ROC curve of class Exanthems and Drug Eruptions (area = 0.87)
== _ROC curve of class Hair Loss Photos Alopecia and other Hair Diseases (area = 0.89)

=== ROC curve of class Herpes HPV and other STDs Photos (area = 0.83)
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Fig. 12 AUC-ROC of Modified CNN

imbalances (e.g., many eczema vs. few rarer conditions) can bias predictions, and inter-
class similarities (e.g., ringworm vs. eczema) make classification challenging. Additionally,
high intraclass variance-due to factors like skin tone and condition severity-adds complexity,
requiring models that generalize well across diverse cases.

5.1 Binary classification success and clinical potential

In binary classification, the custom CNN performed excellently, accurately distinguishing
between ringworm and healthy skin (98.9%), supported by effective data augmentation and
architecture design, echoing findings in [8]. This success suggests Al’s promise for derma-
tology in well-defined tasks, aiding initial diagnosis for visually distinct conditions.

5.2 Challenges in multi-class classification

The lower accuracy in the 23-class task (35.23%) shows the difficulty in differentiating
similar conditions, a challenge noted by prior studies in medical imaging [38-40]. Real-

Fig. 13 Grad-CAM Visualizations of a Correctly Classified Image Across Multiple Models. (a) Original Image
(b) Using Custom CNN (c) Using Modified Custom CNN (d) Using Class Weighted CNN (e) Using Model
trained on 70:30 Split
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world dermatological diagnosis relies on patient history and other contextual data, which Al
currently lacks, as discussed in [41].

5.3 Dataset limitations and advanced techniques

Dataset limitations are a factor here; a larger, diverse dataset could help the model learn
subtle features essential for multiclass classification, as [42] suggests. Future research could
explore ensemble methods and hybrid approaches (e.g., CNNs with SVMs or decision trees)
for improved classification, as highlighted in [22].

5.4 Custom CNN vs. SOTA models

The custom CNN design aimed to capture dermatology-specific features like lesion shape
and texture. While ViTs are powerful for capturing long-range dependencies, they may over-
look local patterns key to dermatology. Additionally, the custom CNN’s simpler architecture
reduced computational load, suited to clinical settings with limited resources. SOTA models,
like ViTs, often require high computational power, limiting their practicality in low-resource
environments. Moreover, our custom CNN showed less overfitting on a moderate dataset,
enhancing generalizability.

5.5 Clinical integration and deployment challenges

Deploying Al models in clinical settings involves regulatory, ethical, and interpretability
considerations [38]. Grad-CAM, which provides visual explanations of CNN predictions,
enhances model transparency, crucial for clinical acceptance [43]. Variations in patient
demographics and clinical protocols further complicate model deployment in dermatology.
Integrating patient metadata, as suggested by [38], could improve generalizability across
diverse populations.

5.6 Future directions

Future research should focus on expanding datasets, refining CNN architectures, and poten-
tially incorporating multi-modal inputs (e.g., patient metadata) to enhance model accuracy
in multiclass settings. Balancing model complexity with clinical applicability is essential, as
[44] emphasizes. Hierarchical classification, grouping similar diseases before further cate-
gorization, may help with visually similar conditions in multi-class diagnosis.

6 Conclusion

This investigation into custom Convolutional Neural Network (CNN) architectures for skin
disease classification sheds light on the potential and limitations of deep learning for der-
matological diagnosis. The impressive accuracy achieved in binary classification (98.9%)
showcases the effectiveness of CNNs in differentiating between specific skin conditions,
particularly for well-defined problems. This success suggests that Al-powered tools could
be valuable for rapid screening and initial diagnosis of certain skin diseases.

@ Springer
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However, the challenges encountered in the 23-class classification task, resulting in a
significant drop to 35.23% accuracy, highlight the complexities involved in developing com-
prehensive skin disease diagnostic systems. This performance gap underscores the need for
more advanced approaches to handle a broader spectrum of dermatological conditions.

Despite these obstacles, the study provides a strong foundation for future research in
Al-assisted dermatology. The results indicate that CNNs are capable of learning mean-
ingful features from skin images, even in intricate multi-class scenarios. Moving forward,
researchers should focus on expanding datasets, exploring more sophisticated model architec-
tures, and potentially incorporating additional contextual information to enhance multi-class
classification performance.

In conclusion, this research adds valuable insights to the growing field of Al-assisted
dermatology, demonstrating both the promise and challenges of applying deep learning to
skin disease diagnosis. As the field progresses, Al tools are likely to play an increasingly
significantrole in supporting dermatologists, potentially leading to more accurate and efficient
diagnoses in clinical practice.
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