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ABSTRACT
In this paper, new designs of infinite impulse response digital
integrators are presented. Transfer functions of the digital integra-
tors are derived after utilising the concept of multirate technique in
the fractional interpolation of the rectangular and bilinear trans-
form. Thereafter, the unknown variables of the obtained general-
ised transfer functions are optimised by using the optimisation
algorithm. This yields the mean relative magnitude error, �
63:439 dB and � 78:771 dB for the first- and second-order, respec-
tively. Furthermore, new designs of the first- and second-order
digital differentiators are obtained by inverting the generalised
transfer functions of the proposed integrator designs followed by
optimisation of the unknown variables. The mean relative magni-
tude errors for first- and second-order differentiators are obtained
as � 56:478 dB and � 75:095 dB, respectively. The proposed
designs of integrators and differentiators exhibit the precise
approximation of the ideal integrator and differentiator over the
full Nyquist interval.
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1. Introduction

Digital integrators and differentiators are extensively applied to find the time integral and
time derivative, respectively, for either measured or input excitations. They possess
diverse applications as a basic building block in the field of signal processing, instrumen-
tation and in communication systems. Hence, the approximation of the ideal integrator
and differentiator should be explicit in terms of their frequency responses (Jang &
Chicharo, 1993; Liu et al., 1991; Xu et al., 2010). The frequency response of the ideal
integrator is given by

HintðωÞ ¼
1
jω

(1)

The frequency response of the ideal differentiator is given by

Hdiff ðωÞ ¼ jω (2)
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where j ¼
ffiffiffiffiffiffiffi
� 1
p

and ω is the angular frequency in radians. The approach of designing
digital integrator and differentiator systems can be either finite impulse response (FIR) or
infinite impulse response (IIR). FIR systems have a linear phase with guaranteed stability.
But, typically for the same magnitude response specifications, the order of the resulting
IIR systems is much lesser than the order of the corresponding FIR systems (Oppenheim
et al., 1999). Therefore, IIR systems offer several benefits in terms of fast response and
fewer memory requirements.

The conventional approach to design the IIR digital integrator and differentiator is by
employing the first-order approximation of the natural logarithmic function (Dyer & Dyer,
2000). It is generally termed as the bilinear transform and it accurately estimates the ideal
integrator and differentiator in the low-frequency region. Pie and Hsu used the concept of
fractional delay filter in the bilinear transform (Pei & Hsu, 2008). Consequently, the
magnitude responses of the estimated digital integrators and differentiators have been
correlated up to the wider band of their analog counterparts as compared to the bilinear
transform. In 1998, Al-Alaoui used the linear interpolation between the standard rectan-
gular and trapezoidal rule and introduced wideband digital integrators and differentiators
(Al-Alaoui, 1992, 1993). Furthermore, in 2019, Goswami et al. extended the matching
magnitude of digital differentiators by utilising the concept of fractional delay in the linear
interpolated rectangular and trapezoidal rule (Goswami et al., 2019, 2020).

Apart from the mentioned techniques, various optimisation algorithms and approx-
imation techniques are used to design the digital integrators and differentiators, which
provide the noteworthy correlation with less relative errors with Equations (1) and (2)
respectively, up to the full Nyquist band (Al-Alaoui, 1994; Al-Alaoui & Baydoun, 2013;
Gupta et al., 2010a, 2010b; Stani et al., 2020; Mishra et al., 2019; Tsai et al., 2006; Upadhyay,
2010; Upadhyay & Singh, 2011).

Al-Alaoui introduced the design of a second-order integrator and differentiator after
exercising the numerical integration rules followed by the optimisation in 2014 (Al-Alaoui,
2011). Nam Ngo introduced the third-order integrator and differentiator based on the
Newton-Cotes integration method (Ngo, 2006). Likewise, optimisation of the pole-zero
locations was used by Upadhyay to suggest wideband differentiator and integrator in
2012 (Upadhyay, 2012). Moreover, in 2017, an optimal design of IIR digital differentiators
is exhibited by Aggarwal et al. after utilising bat algorithm. (Aggarwal et al., 2017). The
methods mentioned above are used to design full-band digital differentiators and inte-
grators. But, they approximate the corresponding ideal responses either by compromising
the low-order or by exhibiting the substantial error in the magnitude responses.

In this paper, generalised first- and second-order digital integrator are designed by
utilising the concept of the multirate technique in the fractional interpolation of bilinear
and rectangular transform. The approach of multirate technique utilises the fractional
delay based system with reference to the sample clock to obtain the extension in
matching magnitude. The inversion of these resultant transfer functions leads to the
generalised transfer function of differentiators. Thereafter both generalised equations of
digital integrator and differentiator are optimised for the weighting variable α and
fractional delay variable δ. Theses designs provide the least relative errors as compared
to the existing designs. Some statistical results also calculated to support this fact.

The rest of this paper is prepared as follows: Section II outlines the application of
fractional delay to the bilinear transform. Section III manifests the proposed design of the
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first- and second-order integrators using fractional interpolation with utilising the multi-
rate technique. Section IV discusses the simulation results for the proposed design of the
first- and second-order integrators. Section V describes the proposed design of the first-
and second-order differentiators. Section VI addresses the simulation results for the
proposed design of the first- and second-order differentiators. Section VII compares the
proposed designs of the integrator and differentiator with existing designs. Section VIII
concludes the paper.

2. Motivation

Conventionally, the digital integrators have been designed by inverting the transfer
function of the first-order bilinear transform. Since the bilinear transform maps the
analog domain to the digital domain without losing their stability. The transfer func-
tion of the bilinear transform-based integrator is given by (Dyer & Dyer, 2000;
Oppenheim et al., 1999).

1
s
¼

T
2
1þ z� 1

1 � z� 1
(3)

where T is the sampling time. Substitution of s=jΩ and z=ejω yields

1
jΩ
¼

T
2
1þ e� jωT

1 � e� jωT
¼

T
2

j tan
ωT
2

� �� 1

(4)

Using the concept of fractional delay in bilinear transform, the fractional bilinear trans-
form (FBLT) (Pei & Hsu, 2008) is described by

FfracðzÞ ¼
δT
2

1þ z� δ

1 � z� δ
¼

δT
2

j tan
ωδT
2

� �� 1

(5)

where δ is the fractional delay variable, 0 � δ � 1 and T is taken as 1. Suitable modifica-
tion in the conventional fractional delay of the FBLT, along with the multirate technique
can be used to design digital integrator and differentiator.

3. Proposed design of the first- and second-order integrators

The proposed design is obtained by implementing the fractional interpolation between
trapezoidal and rectangular rules using the concept of fractional delay used in fractional
bilinear transform. Then, the multirate technique is used to extend its bandwidth to
approximate the ideal integrator precisely.

3.1. Fractional interpolation technique

The interpolation technique employed between trapezoidal and rectangular integration
results in (Al-Alaoui, 1992, 1993)

HðzÞ ¼ αHRðzÞ þ ð1 � αÞHTðzÞ (6)

where α is the weighting variable ranges 0 � α � 1 and HRðzÞ and HTðzÞ are the rectan-
gular and trapezoidal rule-based transfer functions, respectively. It yields
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1
s
¼

Tð1þ αÞ þ ð1 � αÞz� 1

2ð1 � z� 1Þ
¼

Tð1þ αÞ
2

1þ ð1� αÞ
ð1þαÞ z

� 1

1 � z� 1

" #

(7)

Introducing the concept of fractional delay (Devate et al., 2014; Laakso et al., 1996) by
replacing z� 1 by z� δ in Equation (7) results in the following

FðzÞ ¼
δTð1þ αÞ

2

1þ ð1� αÞ
ð1þαÞ z

� δ

1 � z� δ

" #

(8)

where 0 � δ � 1 and 0 � α � 1. Subsequently, using an approximation to the fractional
delay for its equivalent integer delay (Laakso et al., 1996), the generalised transfer function
of the first-order integrator is obtained as (Goswami et al., 2020)

Finte1ðzÞ ¼
Tð1þ αÞ

2
1þ 1� α

1þα ð1 � δÞ þ 1� α
1þα δz

� 1

1 � z� 1

� �

(9)

The generalised transfer function of the second-order digital integrator is given by
(Goswami et al., 2020)

Finte2ðzÞ ¼
T
2

δð1 � αÞðδ � 1Þ þ ð4 � 2δ2ð1 � αÞÞz� 1 þ δð1þ δÞð1 � αÞz� 2

ð1 � δÞ þ 2δz� 1 � ð1þ δÞz� 2

� �

(10)

The generalised transfer functions obtained in Equations (9) and (10) have two variables α
and δ. They can be optimised to get the first- and second-order transfer function of the
digital integrator. However, to approximate the proposed integrator to ideal accurately,
the optimisation should be done along with the extension of their bandwidth.

3.2. Extension of the bandwidth of digital integrators

The bandwidth of the aforementioned generalised transfer functions is extended by
applying the concept of multirate technique as shown in Figure 1 (Devate et al., 2015,

Figure 1. Extension of the digital bandwidth.
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2014; Laakso et al., 1996). The system clock provides the clock with frequency f and time
period T . It gets divided into two clocks. One clock is used to sample the signal with
frequency f , and other clock determines the system delay z0� 1 where z0=z1=r . It provides
the new down sampling frequency as f=r. Here, the binary divider chain is used to divide
the frequency by the factor of r. The acquired low-frequency clock samples the signal from
the signal source. This sampled response is again re-sampled by the system clock with
a clock frequency f . This results in the extension of the digital bandwidth of the corre-
sponding magnitude responses. Therefore, the generalised equation for the first-order
integrator is obtained as

Fint1ðz0Þ ¼
Tð1þ αÞ

2r
1þ 1� α

1þα ð1 � δÞ þ 1� α
1þα δz

0� 1

1 � z0� 1

" #�
�
�
�
�
z0¼ejω=r

(11)

The generalised equation for the second-order integrator is obtained as

Fint2ðz0Þ ¼
T
2r

δð1 � αÞðδ � 1Þ þ ð4 � 2δ2ð1 � αÞÞz0� 1 þ δð1þ δÞð1 � αÞz0� 2

ð1 � δÞ þ 2δz0� 1 � ð1þ δÞz0� 2

" #�
�
�
�
�
z0¼ejω=r

(12)

The factor ‘r’ should be chosen for the minimum possible value of binary power to avoid
clock synchronisation problem (Devate et al., 2015). Therefore, substitution of minimum
possible integer r ¼ 2 and T ¼ 1 in Equations (11) and (12) yields the following F1ðz0Þ
and F2ðz0Þ.

F1ðz0Þ ¼
ð1þ αÞ

4
1þ 1� α

1þα ð1 � δÞ þ 1� α
1þα δz

0� 1

1 � z0� 1

" #�
�
�
�
�
z0¼ejω=r

(13)

F2ðz0Þ ¼
1
4

δð1 � αÞðδ � 1Þ þ ð4 � 2δ2ð1 � αÞÞz0� 1 þ δð1þ δÞð1 � αÞz0 � 2

ð1 � δÞ þ 2δz0� 1 � ð1þ δÞz0� 2

" #�
�
�
�
�
z0¼ejω=r

(14)

To get the first- and second-order transfer functions, the values of δ and α in Equations
(13) and (14) can be optimised.

Here, L1 based fitness function have been used instead of L2-norm as it incorporates
the drawbacks of obtaining high overshoots at discontinuous points and more ripples in
the frequency response. Whereas L1 based fitness function provides a flatter filter
response in both pass-band and stop-band (Aggarwal et al., 2017). Therefore, the error
functions can be written as

E1 ¼
X
jðjHintðωÞjÞ � jF1ðz0Þjz0¼ejω=rÞj (15)

E2 ¼
X
jðjHintðωÞjÞ � jF2ðz0Þjz0¼ejω=rÞj (16)

Simulated annealing (SA) is a probabilistic technique which takes a population and
applies a reducing random variation to each member of the population. It is
a metaheuristic function to approximate global optimisation in a large search space for
an optimisation problem, in which the rate and type of random variation are the part of
the designing process (Bohachevsky et al., 1986). Therefore, application of the simulated
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annealing (SA) optimisation algorithm (Bohachevsky et al., 1986) yields δ = 0:62, α = 0:683
for first-order and δ = 0:9, α = 0:598 for the second-order design. The first- and second-
order transfer function of the proposed integrators are

F1ðz0Þ ¼
1:072z0 þ 0:1168
2:377z0 � 2:377

� �

(17)

F2ðz0Þ ¼
0:03618z02 � 3:349z0 � 0:6874
� 0:4z02 � 7:2z0 þ 7:6

" #

(18)

4. Simulation results

Figure 2 portrays the magnitude response of the proposed first- and second-order
integrators along with the ideal. It is clearly seen from Figure 2, that both the designs
show the correlated magnitude response with that of the ideal integrator. The magnitude
response of the proposed-II design coincides with the ideal as compared to the proposed-
I design in lower frequencies as can be seen in the zoomed region. Whereas in some part
of high-frequency region the proposed-I design overlaps better than the proposed-II. The
computed absolute magnitude error for the proposed designs over 0:0314 � ω � π are
plotted in Figure 3. It depicts that, for the first-order integrator design, the absolute
magnitude error remains less than 0:38� 10� 3 over 0:13π � ω � 0:76π. Whereas in

Figure 2. Magnitude response of proposed first-order and second-order digital integrators with ideal.
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case of second-order design it remains less than 0:25� 10� 3 over 0:1π � ω � π and
1:75� 10� 3 over 0:0314π � ω � π.

Figure 4(a) shows the phase responses of the proposed designs along with the phase
response of the ideal integrator. Both designs show a linear deviation with respect to the
ideal. The first-order design shows the maximum deviation of 39:5 at ω=π. Whereas in the
case of second-order the maximum deviation is 29:5 at ω=π. Figure 4(b) shows the group
delay response of the proposed first- and second-order integrator design. Both designs
show almost constant group delay with deviation between 0:2 and 0:8, which signifies the
linearity of the phase.

5. Proposed design of the first- and second-order differentiators

The generalised transfer functions for the first- and second-order design of digital differ-
entiator can be obtained by inverting the transfer function given in Equations (13) and
(14) for the first-order and second-order respectively. Therefore, for r=2 and T=1, the
generalised equation for the first-order differentiator can be written as

Fdiff1ðz0Þ ¼
4

ð1þ αÞ
1 � z0 � 1

1þ 1� α
1þα ð1 � δÞ þ 1� α

1þα δz
0� 1

" #�
�
�
�
�
z0¼ejω=r

(19)
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Figure 3. Absolute magnitude error of proposed first-order and second-order digital integrators.
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The generalised equation for the second-order integrator is obtained as

Fdiff2ðz0Þ ¼ 4
ð1 � δÞ þ 2δz0 � 1 � ð1þ δÞz0 � 2

δð1 � αÞðδ � 1Þ þ ð4 � 2δ2ð1 � αÞÞz0� 1 þ δð1þ δÞð1 � αÞz0� 2

" #�
�
�
�
�
z0¼ejω=r

(20)

The optimisation is done to optimise the Equations (19) and (20) for the variables δ and α.
The optimum values for δ and α are obtained as 0:29 and 0:294 respectively, with
constant multiplier 0:997 for the first-order design and 0:898 and 0:593 respectively,
with constant multiplier 1 for the second-order design. The first- and second-order
transfer function of the proposed differentiators can be written as

F3ðz0Þ ¼
3:082z0 � 3:082
1:382z0 þ 0:1631

� ��
�
�
�
z0¼z1=2

(21)

F4ðz0Þ ¼
� 0:408z02 � 7:184z0 þ 7:492
0:03728z02 � 3:344z0 � 0:6937

" #�
�
�
�
�
z0¼z1=2

(22)
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Figure 4. (a) Phase response of proposed first-order and second-order digital integrators with ideal (b)
Group delay of proposed first-order and second-order digital integrators.

8 O. P. GOSWAMI ET AL.



6. Simulation results

Figure 5 shows the magnitude response of the proposed first- and second-order differ-
entiator. The absolute magnitude error of the proposed differentiators is shown in
Figure 6. The magnitude response of the proposed designs overlaps with the magnitude
response of the ideal differentiator. The zoomed frequency region shows that the first-
order design provide less deviation than the second-order design in 0:48π � ω � 0:51π
and 0:84π � ω � 0:86π. The absolute magnitude error remains less than 0:002 for 0 �
ω � 0:87π and 0:01 for the entire Nyquist range. Whereas for the second-order design,
the absolute magnitude error remains less than 0:00045 for 0 � ω � π.

Figure 7(a) presents the phase responses of the ideal and proposed designs of the digital
differentiator. The first-order differentiator shows the linear phase with maximum deviation
of 39:5° at ω=π. Whereas the second-order differentiator design attains the linear phase
with maximum deviation of 29:85° at ω=π. Figure 7(b) shows the group delay response of
the proposed first- and second-order differentiator design. Both designs show the group
delay deviation between 0:25 and 0:78, which validates the linearity of the phase.

7. Comparison with the existing designs

In 2016, Devate et al. proposed the first-order differentiator and integrators derived from
the natural logarithmic series. Further, their bandwidth was extended by using a simple
multirate technique for different values of binary power r (Devate et al., 2015). A second-
order integrator and differentiator was developed by Upadhyay by optimising the pole-
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Figure 5.Magnitude response of proposed first-order and second-order digital differentiators with ideal.
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zero locations (Upadhyay, 2012). Another implementation of different order integrators
and differentiators was suggested by Aggarwal et al. (Aggarwal et al., 2017). They
optimised the L1-error fitness function by employing the bat algorithm. The transfer
functions of all these mentioned integrators and differentiators are enlisted in Table 1.

Figure 8 shows the comparison of the absolute magnitude error of the proposed digital
integrators of first- and second-order, and the existing integrators, with the ideal for
0:0314 � ω � π. It is observed that the proposed-I integrator performs better than the
designs proposed by Upadhyay, Aggarwal et al. and Devate et al. (r =8) in a range of
0:0314π � ω � π. Though absolute magnitude error obtained by Devate et al. (r =16)
remains less than the proposed-I, yet it is for the higher value of r. Besides, the second-
order proposed-II integrator outperforms all the mentioned designs for the entire Nyquist
interval. The statistical results for integrators in Table 2 confirm the fact that the first-order
proposed integrator shows the absolute relative magnitude error (ARME) (0:2100) and
mean relative magnitude error (MRME) ( � 63:4393 dB) than the others. A small difference
is observed in ARME and MRME of the proposed-I integrator and Devate et al. (r=16).
However, proposed-II provides the least ARME (0:0359) and MRME ( � 78:771 dB) as
compared to all the integrators mentioned in Table 2.

Figure 9 presents the comparison of the absolute magnitude error of the proposed
first- and second-order digital differentiators and the existing differentiators mentioned
in Table 1. The proposed-I differentiator offers less magnitude error than designs
proposed by the Upadhyay, Aggarwal et al. (second-order), Goswami et al. (second-
order), Devate et al. (r =8) and Devate et al. (r =16) and shows the comparability with
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Figure 6. Absolute magnitude error of proposed first-order and second-order digital differentiators.
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Aggarwal et al. (third-order), in the full Nyquist range. Whereas the proposed-II
differentiator outperforms all the differentiators enlisted in Table 1. The statistical
analysis of differentiators from Table 2 indicates the superiority of the proposed
designs in terms of ARME and MRME. However, the calculated ARME and MRME for
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Figure 7. (a) Phase response of proposed first-order and second-order digital differentiators with ideal
(b) Group delay of proposed first-order and second-order digital differentiators.

Table 1. Transfer functions of the existing integrators and differentiators using different
technique.
Technique Integrators Differentiators

Multirate Devate et.al (first-order) (r = 8) Devate et.al (first-order) (r = 8)
T
2r

z0þ1
z0 � 1

�
Þ
�
�
z0¼ðzÞ1=r

2r
T

z0 � 1
z0þ1

�
Þ

�
�
�
z0¼ðzÞ1=r

Multirate Devate et.al (first-order) (r = 16) Devate et.al (first-order) (r = 16)
T
2r

z0þ1
z0 � 1Þ
� �

�
z0¼ðzÞ1=r

2r
T

z0 � 1
z0þ1

�
Þ

�
�
�
z0¼ðzÞ1=r

PZ Upadhyay (second-order) Upadhyay (second-order)

T z2þ0:679zþ0:0626
1:1534z2 � 0:5729z� 0:58053

� �
1
T

1:1534z2 � 0:5729z� 0:58053
z2þ0:679zþ0:0626

� �

L1-BA Apoorva et al. (second-order) Apoorva et al. (second-order)

T � 0:5986z2 � 0:4186z� 0:0385
0:694z2 � 0:3275z� 0:3569

� �
1
T

0:694z2 � 0:3275z� 0:3569
� 0:5986z2 � 0:4186z� 0:0385

� �

L1-BA Apoorva et al. (third-order)
1
T

0:2232z3 � 0:2803z2 � 0:4773
0:4942z3þ0:6953z20:2550zþ0:0173

� �

Interpolation Goswami et al. (second-order)
1
T

0:5048z2þ3:094z� 3:599
� 3:106z2 � 0:94899zþ0:054276

� �
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a proposed-I differentiator, are little more than the Aggarwal et al. (third-order)
differentiator. Yet, the proposed-I (first-order) has a less order transfer function than
of Aggarwal et al. (third-order). Furthermore, the second-order proposed-II differentia-
tor shows the least ARME and MRME than the mentioned differentiators for the entire
Nyquist range. Therefore, the proposed-I and Proposed-II may be regarded as a low
order wideband digital differentiators.
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Figure 8. Magnitude response comparison of proposed digital integrators with existing designs.

Table 2. Statistical comparisons of proposed integrator and differentiator designs with their corre-
sponding existing designs.

Integrators Differentiators

Method ARME MRME (dB) ARME MRME (dB)

Devate et.al, (first-order) (r = 8) 0.6435 −53.555 3.2178 −39.827
Devate et.al, (first-order) (r = 16) 0.1607 −65.7067 0.7982 −52.041
Upadhyay (second-order) 1.5985 −45.679 2.9264 −40.630
Apoorva et al. (second-order) 1.5747 −45.8485 1.6054 −45.848
Apoorva et al. (third-order) – – 0.3447 −59.172
Goswami et al. (second-order) – – 5.4927 −35.04
Proposed-I, (first-order) (r = 2) 0.2100 −63.4393 0.4603 −56.478
Proposed-II, (second-order) (r = 2) 0.0359 −78.771 0.0554 −75.095
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8. Conclusion

In this paper, the designs of the wideband digital integrators and differentiators have
been proposed. The first- and second-order transfer functions of the digital integrator
were obtained by applying the multirate technique to the fractional interpolation of the
rectangular transform and bilinear transform. Thereafter, it is followed by the optimisation
of two variables, namely, fractional delay variable δ and weighting variable α. By inverting
their generalised transfer function followed by the optimisations, the designs of digital
differentiators were obtained. The proposed designs are compared with the existing
designs to demonstrate their supremacy. Therefore, these low order wideband proposed
digital integrators and digital differentiators may be used as an alternative to the existing
ones and preferred for the real-time applications.
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