
Extended bilinear transform and multirate technique based 
approach for analog-to-digital transform
Om Prakash Goswamia, Dharmendra K. Upadhyayb and Tarun K. Rawatb

aDivision of Electronics and Communication Engineering, Faculty of Technology, University of Delhi, New 
Delhi, India; bDepartment of Electronics and Communication Engineering, Netaji Subhas University of 
Technology, New Delhi, India

ABSTRACT
In this paper, a new transformation polynomial for s-to-z plane is 
presented. This third-order transformation is derived by optimising 
the coefficients of the logarithmic series followed by utilising the 
multirate technique to extend its bandwidth. In terms of magnitude 
and phase response, the proposed transform correlates well with 
the ideal and shows mean absolute magnitude error and mean 
absolute phase error as � 40 dB and � 132:04 dB, respectively. 
The proposed transform is compared with the existing operators to 
demonstrate its performance. In addition, an example is also con-
ferred, which establishes the viability of the transform in terms of 
the overall frequency response, when applied for analog-to-digital 
transformation.
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1. Introduction

Nowadays, in digital filter designing, infinite impulse response (IIR) filters exhibit a broad 
spectrum of usage and advantages over the finite impulse response (FIR) filters. They 
provide the same magnitude response as the corresponding FIR filters with the lower 
order. Hence, the IIR filters deliver a response with less computational complexity for 
a similar filter roll-off as FIR. Therefore, researchers have always shown a keen enthusiasm 
for designing more advanced IIR filters than the existing ones. Though they have phase 
nonlinearity and stability issues, yet they have been resolved to some extent over recent 
years by utilising various techniques (Al-Alaoui, 2011a; Kim et al., 2019; Stosovic et al., 
2019; Tsai & Chou, 2006; Xu et al., 2010).

There are two conventional techniques by which the IIR filters can be designed. The 
first technique involves the direct design in the digital domain, including the least- 
squares, order reduction, and pole-zero placement methods. The second technique 
emulates the analog prototype filter design in the digital domain by using an expropriat-
ing transformation polynomial. In the recent literature, several analog-to-digital trans-
forms have been proposed to substitute the analog domain transfer function HðsÞ with its 
equivalent transfer function HðzÞ in the digital domain (Rawat, 2014). Transforms like 
bilinear and step invariant are conventionally being used so far in the filter design. The 
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step invariant (no hold) technique preserves the time domain specification at the sam-
pling instants but results in aliasing. Therefore, it is unacceptable for high-pass and band- 
stop filters (Deng, 2016). The bilinear transform provides a piecewise linear mapping 
between analog and digital domain but results in the warping effect due to the non-linear 
relationship between analog and digital frequencies. The pre-warping has been utilised to 
overcome these non-linearities, but it fixes the non-linearities at the critical frequencies, 
not in the full Nyquist band. Therefore, it motivates designers to rethink the advanced 
techniques to provide the spectrum transformation without pre-warping (Dyer & Dyer, 
2000; Getu, 2020).

In the recent literature, Al-Alaoui’s first-, second-, third-order differentiators, Ngo’s 
third-order differentiator, and the differentiators proposed by Schneider et al., Hsu 
et al., Gupta et al., and Upadhyay, have been used as s-to-z transforms (Aggarwal et al., 
2017; Al-Alaoui, 2007, 2011a; Goswami et al., 2020; Gupta et al., 2010; Ngo, 2006; Pei & Hsu, 
2008; Schneider et al., 1994; Upadhyay, 2012; Upadhyay & Singh, 2011).

Besides the techniques mentioned above, various optimisation algorithms have 
been used to design digital differentiators. These are often applied as 
a transformation operator to transform the s-plane into the z-plane. Some of them 
are based on nature-inspired algorithms like genetic algorithms (GA), particle swarm 
optimisation (PSO), and other modified algorithms like simulated annealing (SA), 
Fletcher and Powell optimisation, GGSA, etc (Aggarwal et al., 2015; Al-Alaoui & 
Baydoun, 2013; Gupta et al., 2014). Above mentioned techniques are intently focused 
on matching either the magnitude response or the phase response of s-plane in the 
digital domain. However, for the perfect s-to-z transformation, the matching of both 
magnitude and phase response are equally crucial for the overall frequency response 
of the transformed filter (Mishra et al., 2019).

In this paper, a new third-order transformation polynomial for the analog-to-digital 
domain is proposed. It is obtained by optimising two variables, namely α1 and α2, 
considered in the logarithmic series expansion. Then, the bandwidth of the proposed 
transform is extended by utilising the concept of the multirate technique. Hence, the 
proposed operator matches the magnitude response with the identical phase and pro-
vides a mean absolute magnitude error (MAME) as � 40 dB up to the complete Nyquist 
interval. Consequently, the proposed operator outperforms all the existing operators in 
terms of MAME and mean absolute phase error (MAPE).

The rest of the paper is organised as follows: Section II deals with a brief descrip-
tion of the fundamental need of the perfect s-to-z transform in digital filter design-
ing. Section-III describes the extensions of the bilinear transform with their 
performances. Section-IV outlines the proposed transform with their corresponding 
design equations and optimisation. Section-V illustrates the viability of the proposed 
design by showing the comparison with the extended bilinear transforms. Section-VI 
depicts the extension of the bandwidth for the proposed transform. Section-VII 
shows the comparison of the proposed transform with the existing s-to-z transforms. 
Section-VIII manifests the proposed design’s credibility by applying it in an example, 
and section-IX concludes the paper.
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2. Motivation

In IIR digital filter design, the fundamental requirement of the transformation from the s- 
plane to the z-plane can be fulfilled by choosing a suitable transformation operator. In 
transformation, an ideal Laplace operator ‘s’ of analog domain for -1 � Ω � 1 is 
defined as the one that has frequency response HðjωÞ = jω for -π � ω � π in digital 
domain. The corresponding magnitude response is jHðjωÞj ¼ ω, where ω is the angular 
frequency in radians, and the phase response remains as π=2 (Getu, 2020; Rawat, 2014). 
The analog (s-plane) to digital (z-plane) transformation operator should be chosen such 
that it provides linearity in the magnitude and phase as π=2. The relationship between the 
s-plane and the z-plane is given by 

z ¼ esT (1) 

where T is the sampling period in seconds. If s = σ þ jΩ and z = rejω, then equivalent 
relation can be formulated (Rawat, 2014) 

rejω ¼ eσT ejΩT 

Considering the stability concernment of the analog and digital domain, the value of σ = 0 
and r = 1 is taken. It implies ω = Ω for T = 1. Therefore, 

s ¼ jω ¼ fðzÞjz¼ejω ¼ ωejðπ=2Þ (2) 

Ideally, the magnitude of fðzÞ should vary linearly with ω and phase should remain as π=2 
for the whole Nyquist range. However, all the proposed operators in the literature do not 
attain the transformation without any variation in matching magnitude or phase strictly. 
Consequently, if δω and δϕ are the variations in the linearity of magnitude and the ideal 
phase respectively, then fðzÞ can be written as 

fðzÞ ¼ ðω� δωÞejðπ=2�δϕÞ (3) 

Therefore, all the existing operators belong to either of the two classifications. First, the 
operators with the prefect phase, but showing variation in the magnitude response due to 
δω�0. Second, the operators offering linearity in the magnitude response but do not provide 
the perfect phase due to δϕ�0. However, for perfectly matching frequency response of the 
digital transformed filter, the s-to-z operator is necessary to have δω = 0 and δϕ = 0.

Case-I (when δϕ! 0 and δω�0)

If there is no variation in the transformation operator’s phase response and it remains π=2 
for the full Nyquist range. It directs us to the bilinear transform, which provides the perfect 
phase. However, it shows the significant magnitude error in the high-frequency region 
(Dyer & Dyer, 2000; Getu, 2020).

Case-II (when δϕ�0 and δω! 0)

This incorporates the number of operators proposed by Gupta et al., Upadhyay, Apoorva 
et al., and others (Aggarwal et al., 2017; Al-Alaoui, 2007, 2011a; Goswami et al., 2020, 2021; 
Gupta et al., 2010; Ngo, 2006; Pei & Hsu, 2008; Schneider et al., 1994; Upadhyay, 2012; 
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Upadhyay & Singh, 2011). They provide minimum variation in matching the magnitude 
response yet do not yield the perfect phase as bilinear transform does. Due to this 
mismatch of the phase response, these operators cannot be considered as a perfect s- 
to-z plane transforms in the true sense.

Hence, it is observed that there should be a trade-off between the bilinear transform 
and other transforms, which confers the least magnitude and phase error with reference 
to the ideal. Therefore, the proposed design attempts to match the magnitude and phase 
response with the ideal and provides a minimum error, i.e., δω! 0 and δϕ! 0.

3. Extended bilinear transforms

The most preferably used first-order bilinear transform is derived from the expansion of z 
= esT or equivalently s = lnðzÞ=T of the series given below (Dyer & Dyer, 2000). 

lnðzÞ
T
¼

2
T

z � 1
z þ 1

þ
1
3

z � 1
z þ 1

� �3

þ
1
5

z � 1
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þ ::

" #

(4) 

where lnðzÞ is the natural logarithm of z. Substituting z ¼ ejω in Eq. (4) results 
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For T = 1, the corresponding frequency response can be written as 
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where the magnitude is given as 
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It is used to approximate the magnitude response of the ideal Laplace operator (s). The 
truncation of Eq. (4) after the first-term leads to the first-order bilinear transform, but it 
does not follow the Laplace operator’s magnitude response for the full Nyquist band. 
Therefore, to extend this approximation of the matching magnitude, the second and third 
term from the right-hand side (RHS) of Eq. (4) is considered. It results in the third-order and 
fifth-order transfer functions, respectively.

The magnitude response of bilinear transform and extended bilinear transform are 
shown in Figure 1. It describes that the first-order bilinear transform matches the ideal 
magnitude response up to 0:28π of the normalised Nyquist interval. Whereas the third- 
order and fifth-order bilinear transforms extend the matching magnitude response up to 
0:4π and 0:48π, respectively, of the normalised Nyquist range.

The phase responses shown in Figure 2 demonstrate that the first-order bilinear 
transform’s phase perfectly matches the ideal. The extended third and fifth-order bilinear 
transforms display the ideal correlation up to 0:666π and 0:952π, respectively, and shift to 
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� π=2 after that. It is because the phase response associated with the magnitude 
response is a discontinuous linear function. Therefore, the phase will change from þ
π=2 to � π=2 or vice-versa, whenever the amplitude of lnðejωÞ changes its sign (Rawat, 
2014).
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Figure 1. Magnitude response of the ideal, bilinear transforms, third-order bilinear transform, and 
fifth-order bilinear transform.
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Figure 2. Phase response of the ideal, bilinear transforms, third-order bilinear transform, and fifth- 
order bilinear transform.
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4. Proposed s-to-z transform

Taking advantage of the ideal phase of the bilinear and the extended bilinear transforms, 
the coefficients of series stated in Eq. (4) can be optimised to attain the ideal magnitude 
response.

Let 

FðzÞ ¼
z � 1
z þ 1

(7) 

The third-order transfer function is given by 

F1ðzÞ ¼ α1FðzÞ þ α2F3ðzÞ (8) 

where α1 and α2 are the variables. Substitution of Eq. (7) in (8) yields 

F1ðzÞ ¼
ðα1 þ α2Þz3 þ ðα1 � 3α2Þz2 � ðα1 � 3α2Þz � ðα1 þ α2Þ

z3 þ 3z2 þ 3z þ 1
(9) 

A general third-order transfer function can be expressed as 

HðzÞ ¼
A1ðzÞ
A2ðzÞ

¼
b0z3 þ b1z2 þ b2z þ b3

a0z3 þ a1z2 þ a2z þ a3
(10) 

Comparison of Eqs. (9) and (10) yields 

b0 ¼ � b3 ¼ ðα1 þ α2Þ (11) 

b1 ¼ � b2 ¼ ðα1 � 3α2Þ (12) 

a0 ¼ a3 ¼ 1 (13) 

a1 ¼ a2 ¼ 3 (14) 

The numerator coefficients of Eqs (9) and (10) are antisymmetric, whereas the denomi-
nator coefficients are symmetric. Therefore, Eq. (10) can be written as 

HðωÞ ¼
jA1ðωÞjejθ1ðωÞ

jA2ðωÞjejθ2ðωÞ
¼ jAðωÞjejθðωÞ (15) 

where 

jAðωÞj ¼
jA1ðωÞj
jA2ðωÞj

(16) 

θðωÞ ¼ ½θ1ðωÞ � θ2ðωÞ� (17) 

From Eqs. (10), (11) and (12), the following can be deduced 

A1ðzÞ ¼ b0z3 þ b1z2 � b1z � b0
�
�

z¼ejω 

A1ðωÞ ¼ je� j3
2ω 2b0 sin

3
2

ω
� �

þ 2b1 sin
1
2

ω
� �� �

(18) 
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¼ ejπ
2e� j3

2ω 2b0 sin
3
2

ω
� �

þ 2b1 sin
1
2

ω
� �� �

(19) 

¼ jA1ðωÞjejθ1ðωÞ (20) 

where 

θ1ðωÞ ¼ �
3
2

ωþ
π
2

(21) 

Similarly, from Eqs. (10), (13) and (14), the following can be deduced 

A2ðzÞ ¼ a0z3 þ a1z2 þ a1z þ a0
�
�

z¼ejω 

A2ðωÞ ¼ e� j3
2ω 2a0 cos

3
2

ω
� �

þ 2a1 cos
1
2

ω
� �� �

(22) 

¼ jA2ðωÞjejθ2ðωÞ (23) 

where 

θ2ðωÞ ¼ �
3
2

ω (24) 

Substituting of the values of θ1ðωÞ and θ2ðωÞ in Eq. (17) yields 

θðωÞ ¼ π=2 (25) 

Therefore, it is concluded that the F1ðzÞ (Eq. (9)) provides the phase response π=2, and it 
will become � π=2 whenever its amplitude would change its sign. Now, for the magni-
tude response linearity, the coefficients α1 and α2 of the third-order transfer function are 
optimised by genetic algorithm (GA) (Mitchell, 1996), to minimise the difference between 
the Eq. (2) and the Eq. (9). The error objective function can be represented by 

E ¼ ðjf ðzÞj � jF1ðzÞjÞj jjz¼ejω (26) 

The optimum values of α1 and α2 are obtained as 1:965 and 0:427, respectively. 
Substitution of these values in Eq. (9) yields 

F1ðzÞ ¼
1
T

2:392z3 þ 0:684z2 � 0:684z � 2:392
z3 þ 3z2 þ 3z þ 1

� �

(27) 

Hence, Eq. (27) represents the optimum extended bilinear transform-based proposed s-to 
-z transform.

5. Simulation analysis of the proposed transform and comparison with the 
extended bilinear transforms

Figure 3 portrays the comparison of the magnitude response of the bilinear transform, 
extended bilinear transform, and the proposed transform. It is evident from Figure 3 that 
the proposed transform (F1ðzÞ) provides linearity up to 0:5π and matches the ideal 
magnitude for a wide range compared to bilinear, and extended bilinear transforms. 
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The phase response shown in Figure 4 demonstrates that the proposed transform 
provides the ideal phase up to 0:7224π of the whole Nyquist interval. However, the 
proposed transform is not providing the magnitude matching and ideal phase up to 
the full Nyquist band. Therefore, the extension of the matching bandwidth is required to 
cover the entire Nyquist interval.
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Figure 3. Comparison of the absolute magnitude errors of the bilinear transforms, third-order bilinear 
transform, fifth-order bilinear transform, and the proposed transform with ideal.
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Figure 4. Phase responses of the ideal, bilinear transforms, third-order bilinear transform, fifth-order 
bilinear transform and the proposed transform.
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6. Extension of bandwidth for the proposed transform

Figure 5 shows the multirate technique’s implementation to extend the matching band-
width 0 � ω � 0:5π of the proposed transform. A high-frequency system clock shown in 

Figure 5 gets split into two. One clock provides the system delay ðz0Þ� 1, where z0=ðzÞ1=r , 
and the other clock is used by source sampler to sample the signal after getting divided by 
the factor r (Laakso et al., 1996). The sampled signal acquired by low sampling frequency 
is then interpolated and resampled by a high-frequency system clock. It provides stretch-
ing of the matching magnitude region 0 � ω � 0:5π up to the complete Nyquist interval. 
Here, r should be chosen as binary power such that the splitting of the clock can be done 
using a binary divider chain (Devate et al., 2014, 2015). Hence, the least possible value of 
dividing factor r has been considered to avoid the clock synchronisation problem. 
Therefore, Eq. (10) can be written as 

Hðz0Þ ¼ r
b0z03 þ b1z02 þ b2z0 þ b3

a0z03 þ a1z02 þ a2z0 þ a3
(28) 

For r = 2, Eq. (28) can be written as 

F1ðz0Þ ¼ 2
2:392z03 þ 0:684z02 � 0:684z0 � 2:392

z03 þ 3z02 þ 3z0 þ 1
(29) 

which is the transfer function of the proposed transform after utilising the concept of 
multirate technique.

Figure 5. Implementation for the extension of the digital bandwidth.
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7. Comparison with the Existing s-to-z Transforms

In 2011, Al-Alaoui proposed the design of a three-segment third-order differentiator, 
which was derived from the integration rules and optimisation (Al-Alaoui, 2011a). In 
another design, Nam Ngo applied the newton-cotes integration method to design a third- 
order differentiator (Ngo, 2006). Gupta et al. suggested the third-order design of 
a wideband differentiator by employing the linear programming (LP) technique in 2010 
(Gupta et al., 2010). Moreover, in 2017, Apoorva et al. proposed a third-order differentiator 
by using a L1 bat algorithm-based differentiator (Aggarwal et al., 2017). The transfer 
functions of all the operators mentioned above are enlisted in Table 1.

Figures 6 and 7, respectively, compare the magnitude and phase responses of the 
ideal, proposed transform, and the transforms enlisted in Table 1. Figure 8 shows the 
absolute magnitude error comparison of all the mentioned transforms with the ideal. 
Table 2 enlists the statistical analysis in terms of MAME (dB) and MAPE (dB). The proposed 
transform manifests a much linear magnitude response as compared to the other men-
tioned transforms. The proposed transform’s absolute magnitude error remains less than 
0:018 for 0 � ω � 0:92π and 0:065 for the full band. The phase response of the proposed 
transform perfectly matches the ideal response for the entire Nyquist interval. The 
statistical conclusion made from Table 2 states that the proposed transform outperforms 
the other transform proposed by Al-Alaoui, Nam Quo, and Gupta et al. Though it remains 

Table 1. Transfer functions of existing s-to-z transforms.
Transformation Mapping Function/Transform

Al-Alaoui three-segment (Al-Alaoui, 2011a) 1
T

0:0190z3 � 0:0290z2þ1:1230z� 1:1810
z3þ0:1846z2 � 0:0017zþ0:0348

� �

Nam Quoc Ngo (Ngo, 2006) 1
T

2:7925z2ðz� 1Þ
ð2:3658Þðzþð1=2:3658ÞÞðz2 � 0:2605zþ0:047

� �

Gupta et al. (Gupta et al., 2010) 1
T

z2ðz� 1Þ
0:329z3þ0:8677z2 � 0:1694zþ0:0038

� �

Apoorva et al. (Aggarwal et al., 2017) 1
T

0:2232z3þ0:5343z2 � 0:2803z� 0:4773
0:4942z3þ0:6953z2 0:2550zþ0:0173

� �
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Figure 6. Magnitude responses of the ideal, the proposed transform, and the existing transforms.
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Figure 7. Phase responses of the ideal, the proposed transform, and the existing transforms.
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Figure 8. Comparison of the absolute magnitude errors of the proposed transform and existing 
transforms with the ideal.

Table 2. Comparison of errors of the existing transforms with the proposed transform.
Transformation MAME, (dB) MAPE, (dB)

Al-Alaoui three-segment rule,(3rd order) (Al-Alaoui, 2011a) −35.0897 4.7075
Nam Quoc Ngo’s (3rd order) (Ngo, 2006) −28.898 −3.4139
Gupta et al. (3rd order) (Gupta et al., 2010) −31.4049 −7.70
Apoorva et. al. (3rd order) (Aggarwal et al., 2017) −59.1721 4.80
Proposed Transform (F1ðz0Þ) −40 −132.04
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comparable with the design proposed by Apoorva et al. in terms of MAME. However, in 
terms of MAPE, the proposed transform performs best compared to the other transforms 
enlisted in Table 1. Therefore, the proposed transform manifests a suitable trade-off 
between matching the ideal magnitude and the phase response. Consequently, it is 
tactical to utilise the proposed operator for analog to digital domain transformation in 
the filter designing.

8. Example

To validate the proposed s-to-z operator, an example of an IIR Butterworth low-pass filter 
with second-order is taken into consideration. The analog transfer function is stated 
below as (Mishra et al., 2019) 

H1ðsÞ ¼
0:5631

s2 þ 1:061sþ 0:5631 

The enlisted s-to-z operators in Table 5.1 and the proposed transform F1ðz0Þ have been 
applied to the analog transfer function H1ðsÞ. The result in magnitude and phase 
responses have been portrayed in Figures 9 and 10, respectively. The responses depict 
that the proposed transform provides a better correlation with the corresponding analog 
response than others. The AME response, shown in Figure 11, shows that the proposed 
transform provides the least magnitude error. The maximum magnitude error produced is 
restricted up to 0:015, which confirms the proposed transform’s efficacy.

9. Conclusion

In this paper, a new design of the s-to-z transform has been presented. It has been derived 
by optimising the coefficients of the logarithmic series followed by extending its match-
ing bandwidth up to full Nyquist interval. The proposed s-to-z operator provides MAME 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency ( / )

0

0.2

0.4

0.6

0.8

1

1.2

M
ag

ni
tu

de
 R

es
po

ns
e

Ideal
Al-Alaoui three segment (3rd order)
Nam Quoc Ngo (3rd order)
Gupta et al. (3rd order)
Apoorva et al. (3rd order)
Proposed Transform (F

1
(z'))

0.8 0.81 0.82 0.83
0.06

0.08

0.1

0.12

Figure 9. Comparison of the magnitude responses of the low-pass filter.
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and MAPE as � 40 dB and � 132:04 dB, respectively, and performs better than all the 
existing s-to-z operators. The proposed transform has also been applied in transforming 
a filter from the analog domain to the digital domain. It provides the accurate frequency 
responses than the existing transforms, which validates its applicability. Therefore, the 
proposed s-to-z transform can be employed as an alternative to the existing analog-to- 
digital transforms in digital filter designing.
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