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Abstract
This paper presents a new optimal second-order design of the infinite impulse response
digital differentiator. This design manifests the L1-error fitness function’s optimiza-
tion using the multi-verse optimization algorithm. The optimizing variables are
obtained from the direct wave-form-based transfer function. The acquired magni-
tude response approximates the ideal differentiator with the mean absolute magnitude
error −45.8842dB. The designed optimal differentiator has also been compared with
the existing designs to manifests its efficacy.

Keywords Direct wave-form · Multiverse optimizer · Optimum digital
differentiator · Signal processing

1 Introduction

Digital differentiator (DD) is used to compute the time rate of change of any real-time
applied or measured input. Unlike the analog differentiators, digital differentiator
implementation is composed of delays, adders, and multipliers in place of inductors,
capacitors, and resistors, which provide flexibility in the configuration. The extensive
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applicability of the digital differentiator designs in image processing, radar signaling,
and in different aspects of biomedical engineering makes it a convincing field for
researchers and designers [2, 21]. Like other types of filters, digital differentiators can
be designed as finite impulse response (FIR) or infinite impulse response (IIR) filters.
However, both techniques have their own merits and demerits but, in applications
where the linear phase is not required, IIR digital differentiators are preferred over
FIR digital differentiators due to their low filter order [16].

Researchers have proposed several low-order differentiator designs based on frac-
tional delays, numerical integrationmethods, and direct pole-zero optimization, which
reasonably approximates the DD’s ideal magnitude response [2–4, 8, 9, 12, 22]. Some
evolutionary and intelligent algorithms have also been developed to provide the opti-
mum designs by direct coefficient optimization of the generalized transfer function
of different orders [5, 11, 13]. These metaheuristic algorithms are applied to the fit-
ness function based on the error difference function formulated using L2 norm. These
optimizations incorporated the associated drawbacks of ripples in the pass-band and
high overshoots at discontinuity points. However, recent research shows that L1 fit-
ness function-based designs provide a flatter response in both pass- and stop-band.
Furthermore, integration of different objective functions and hybrid optimization algo-
rithms have been utilized to propose the low-order differentiator design with better
approximations [1, 10, 19]. Apart from it, some new implementation techniques have
also been developed to provide superior noise behavior and overflow stability which
makes the designs computationally efficient [14, 17].

Generally optimizing algorithms are based on the concept of exploration and
exploitation. In the first exploration phase, the algorithm performs the extensive search
for the possible search space whereas in next exploitation phase, the algorithm empha-
sizes on local search and convergence towards promising areas obtained in the first
phase. As these are two conflicting stages, the algorithm must possess the optimum
balance. The algorithm multiverse optimizer (MVO) formulated by Mirjalili et al. in
2016 efficiently balances exploration and exploitation, and provides the highly com-
petitive results during optimization. Due to local optima avoidance,MVOoutperforms
PSO, GA, GSA and other optimizing algorithms [15].

In this paper, the integrated and comprehensive study of MVO with L1-norm is
exercised for the design of IIR digital differentiator. First, the direct wave form (DWF)-
based generalized transfer function is derived as it provides less coefficient sensitivity
and low quantization noise in its implementation [18]. It is then followed by opti-
mization of the L1-norm error objective function by utilizing the multiverse optimizer
algorithm. The proposed design has also been compared with the existing designs to
show its efficacy.

The rest of this paper is prepared as follows: Sect. 2 outlines the proposed digital
differentiator’s design. Section 3 manifests the short description of the multi-verse
optimization algorithm used in the paper. Section 4 discusses the simulation results of
the proposed design and comparison with the existing designs. Section 5 concludes
the paper.
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2 Problem Formulation and Design of Digital Differentiator

The ideal digital differentiator is defined by

Hd(ω) = jω − π ≤ ω ≤ π (1)

which can be approximated using N th-order IIR digital system. For second order, the
generalized transfer function can be written as:

H(z) = B0z2 + B1z + B2

z2 − A1z − A2
(2)

or
H(z) = B0 + α1z + α2

z2 − A1z − A2
(3)

whereα1 = B1+A1B0 andα2 = B2+A2B0. The system function H(z) has five degrees
of freedom,which can be utilized to obtain any IIR-based system design. The proposed
approach is first to convert Eq. (3) into its corresponding state-space representation.
After that, the similarity transformation is applied to acquire the corresponding direct
wave-form representation [17, 18]. Finally, their respective coefficients have been
optimized.

The general state-space representation can be written as:

s[n + 1] = As[n] + Bx[n], y[n] = Cs[n] + Du[n] (4)

where s[n] is the N -dimensional state vector of state variables for the input x[n] and,
y[n] is the corresponding output. Hence, to represent Eq. (3) in the state-space form,
it must satisfy the relation H(z) = D+C(zI−A)−1B. Therefore, the corresponding
matrices can be calculated as:

A =
[
A1 A2
1 0

]
; B =

[
1
0

]
; C = [

α1 α2
] ;D = [B0] (5)

To obtain the DWF, the state plane rotation is applied to Eq. (5), which establishes the
relation as [7]:

[Aw] = [T−1AT]; [Bw] = [T−1AB]; (6)

[Cw] = [CT]; [Dw] = [B0] (7)

where

T =
[
1
2

−1
2

1
2

1
2

]
(8)

Therefore, the obtained state-space matrices for the DWF are as follows:

Aw =
[
1 − γ1 −γ2

γ1 −1 + γ2

]
; Bw =

[
1

−1

]
(9)
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Cw = [
η1 − γ1B0 η2 − γ2B0

] ;Dw = [B0] (10)

where

γ1 = 1

2
(1 − A1 − A2), γ2 = 1

2
(1 + A1 − A2) (11)

and

η1 = 1

2
(B0 + B1 + B2), η2 = 1

2
(B0 − B1 + B2) (12)

Therefore, the corresponding DWF-based transfer function can be written as:

Hw(z) = Dw + Cw(zI − Aw)−1Bw (13)

Hw(z) = k
B0z2 + (η1 − η2)z + (η1 + η2 − B0)

z2 + (γ1 − γ2)z + (γ1 + γ2 − 1)
(14)

The five coefficients γ1, γ2, η1, η2 and B0 of the obtained transfer function in Eq. (14)
can be optimized to approximate the ideal digital differentiator. The L1-norm fitness
function provides the flat response, low overshoot, and ripples at the discontinuity
points [1]. Therefore, L1-norm-based error objective function is utilized to minimize
the error between the ideal and the approximated response. It is defined as:

||E || =
∑
ω

|(|Hd(ω)| − |Hw(z)|)|z=e jω (15)

where ||.|| provides norm of function.

3 L1-MVO for the Design of Digital Differentiator

Themulti-verse optimizer utilized for the optimization is described in this section. The
L1-norm-based error objective function given in Eq. (15) is minimized and evaluated
at each iteration to get the best possible outcome.

MVO Algorithm is a nature-inspired and stochastic population-based algorithm. It
is inspired by the theory of multiple parallel universes based on the three key factors:
white holes, black holes, and wormholes. White holes play a part in the expansion,
created during big-bang or from the universes’ collision. Black holes are the opposite
of the white hole and attract everything, even the light, under strong gravitational pull.
The wormholes act like time-space tunnels for traveling from one part of the universe
to any other or between universes. Besides, each universe shows its inflation rate to
result in the expansion. These three concepts are formulated in a mathematical model
to evaluate exploration, exploitation, and local re-search. For exploring search spaces,
MVO uses black and white hole concepts, and for exploiting the search spaces, it
uses wormholes. Each solution and variable is interpreted as a universe and object in
the search space, respectively. The inflation rate is proportional to the corresponding
fitness function [15, 20].

The algorithm follows the following rules for its successful operation.
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Table 1 Control parameters of
MVO for the design

Parameter Value

Min. wormhole existence ratio 0.2

Max. wormhole existence ratio 1

Variables lower bounds −0.5

Variables lower bounds 1

Universes 30

Iterations 150

• The higher inflation rate leads to a high probability of white holes and a low
probability of having black holes.

• The objects tend to move from a higher inflation rate to a lower inflation rate
through white holes and black holes.

• The objects may show random movement to get the possible best universe, irre-
spective of the inflation rate.

The optimization process begins with creating a set of universes randomly. With
each iteration, objectsmove from a higher inflation rate to a lower inflation rate through
white holes and black holes. Meanwhile, wormholes teleport objects randomly to get
the best universe. The updating process relies on the following equation: [6].

x j
i =

⎧⎪⎨
⎪⎩

{
x j + T DR + ((ub j − lb j ) ∗ r4 + lb j ), if r3 < 0.5

x j − T DR + ((ub j − lb j ) ∗ r4 + lb j ), if r3 ≥ 0.5
if r2 < WEP

x j
RW if r2 ≥ WEP

(16)

Here, x j represents the j th parameter of the best individual universe. lb j and ub j

indicate the lower and upper bounds of j th variable. x j
i represents the j th parameter

of i th universe with r2, r3, r4 are random numbers ranges from 0 to 1. TDR and WEP
are Traveling Distance Rate and Wormhole Existence. TDR and WEP are defined as:

WEP =
(
a + t ∗

(
b − a

T

))
(17)

where a, b, t are the minimum, maximum and current iterations. T represents the
maximum number of allowed iterations.

T DR =
(
1 − t1/p

T 1/T

)
(18)

where p indicates the exploitation accuracy [6, 15]. Table 1 enlists all the essential
parametric values for the optimization process. The coefficients of lower and upper
bound are restrictedwithin the limit of−0.5 and 1 tomaintain the IIR design’s stability.



Circuits, Systems, and Signal Processing

4 Simulation Analysis and ComparisonWith the Existing Designs

The optimized values for γ1, γ2, η1, η2 and B0 are obtained as 0.88678, 0.17933,
−0.00032, −0.31687 and −0.67014, respectively. The corresponding transfer func-
tion of the proposed digital differentiator is obtained as:

Hproposed(z) = 1.72247
−0.67014 + 0.31655z−1 + 0.35295z−2

1 + 0.707454z−1 + 0.066108z−2 (19)

The proposed differentiator’s magnitude response is plotted along with the ideal
in Fig. 1. It approximates the ideal differentiator considerably well over the complete
Nyquist interval. Figure 2 compares the absolute magnitude error of the proposed
L1-MVO-based differentiator design with the recently published designs to evaluate
its efficacy.

In 2011, the third-order segment-based digital differentiator was proposed by Al-
Alaoui [2]. The standard numerical integration techniques followed by the simulated
annealing (SA) optimization algorithm provide an excellent approximation to the ideal
differentiator. Theutilization of genetic algorithmapproximationhas beendoneby Jain
et al. to propose the design of digital differentiators with considerable improvement
[12]. Upadhyay optimized pole-zeros locations to provide the second-order digital dif-
ferentiator [22]. Furthermore, the designs provided byAggarwal integrate the L1-norm
with different optimization techniques and approximate the ideal digital differentiator
with low magnitude error [1]. Table 2 enlists the transfer functions of the existing
designs of digital differentiators.
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Fig. 1 Magnitude response of the ideal and proposed digital differentiator
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Fig. 2 Absolute magnitude error comparison of existing digital differentiator designs with the proposed
design

Table 2 Transfer functions of existing IIR digital differentiators

Existing designs Transfer function

Al-Alaoui three-segment (PSO) [2]

(
0.0190z3−0.0290z2+1.1230z−1.1810

z3+0.1846z2−0.0017z+0.0348

)

Jain et al. (GA) [12]

(
z2−0.4812z−0.5142

0.8647z2+0.5998z+0.0541

)

Upadhyay (PZO) [22]

(
1.1534z2−0.5729z−0.58053

z2+0.679z+0.0626

)

Aggarwal et al. (L1-BA) [1]

(
0.6940z2−0.3275z−0.3569
−0.5986−0.4186z−0.0385

)

Aggarwal et al. (L1-PSO) [1]

(
0.6532z2−0.4296z−0.222
0.5649z2+0.291z+0.0156

)

It can be seen in Fig. 2 that the proposed DD performs better than the designs
mentioned above for the complete Nyquist interval. The proposed L1-MVO-based
design provides less error than the Upadhyay et al. [22] in the high-frequency range
and outranges the design proposed by the Al-Alaoui, Gupta et al. Aggarwal et al. (L1-
PSO). At the same time, it remains comparable with the design offered by Aggarwal
et al. (L1-BA). Yet, for the complete Nyquist frequency range, the proposed L1-MVO
design provides considerable improvement to all the designs taken for comparison.
Table 3 gives the statistical comparison,which further confirms that the sumof absolute
magnitude error (SAME) and mean absolute magnitude error (MAME) attain by the
proposed designs are the least compared to others.
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Table 3 Comparison of errors of the existing digital differentiators designs with the proposed design

Existing designs SAME MAME (dB)

Al-Alaoui three-segment (PSO) [2] 5.5590 − 35.0897

Jain et al. (GA) [12] 1.7191 − 45.1927

Upadhyay (PZO) [22] 2.9264 − 40.6303

Aggarwal et al. (L1-BA) [1] 1.6054 − 45.8547

Aggarwal et al. (L1-PSO) [1] 3.0829 − 40.1755

Proposed 1.5998 − 45.8842

5 Conclusion

This paper has presented the optimum design of the second-order IIR digital dif-
ferentiator. The design involves optimizing direct wave-form-based coefficients with
L1-norm-based error objective function after utilizing the multiverse optimizing algo-
rithm. The proposed design gives SAME and MAME as 1.5998 and −45.8842 dB,
respectively, which performs better than the existing IIR differentiator designs. There-
fore, the proposed DD design can be used as the alternative to the existing ones.

DataAvailability The data that support the findings of this study are available from the corresponding author
on request.
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