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Optimal design and low noise realization of digital differentiator

Om Prakash Goswami, Aasheesh Shukla∗ , Manish Kumar1

This manuscript presents a design of a differentiator in the digital domain with its low noise realization. It manifests the
minimization of the L1 -error objective function by using a hybrid optimization technique consisting of the particle swarm
and simulated annealing optimization algorithm. The obtained magnitude response provides a noteworthy approximation
of the ideal differentiator with a minimal magnitude inaccuracy when compared with the existing designs. The realization
structures are also investigated and compared in terms of the noise gain behavior.
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1 Introduction

Differentiators in digital domain are crucial in the va-
riety of physical phenomena since most signal processing
is done in the digital domain. It calculates the time rate
of change of any applied real-time or measured excitation
given to the system. Digital Differentiators have typically
been understood in the engineering field as a linear sys-
tem or filter with a predetermined frequency and time
response. As opposed to analogue differentiators, which
use resistors, inductors and capacitors to give rigidity in
the configurations, digital differentiators use multipliers,
adders and delays to provide flexibility. Due to its wide
range of applications in fields like image processing, radar
signalling, and biomedical engineering, the accurate ap-
proximation of digital differentiator has become increas-
ingly compelling for researchers and designers in current
years [1–3].

Literature shows that in recent years, various ap-
proaches based on mathematical formulations, fractional
delays, and metaheuristic optimizations have been em-
ployed to design the different infinite impulse response
(IIR) approximations of the ideal differentiator. Linear
interpolation, Simpson integration, Newton-cotes integra-
tion, and segment rule are some mathematical frame-
works that have been applied to approximate the digital
differentiator [4–7]. Then, the utilization of fractional de-
lays in place of integer delays has further improved the
magnitude approximation [8]. Furthermore, some meta-
heuristic optimizing algorithms like simulated anneal-
ing (SA), multi-verse optimization (MVO), real-coded ge-
netic algorithm (RCGA), bat algorithm (BA), and oth-
ers has been applied to optimize the generalized transfer
function of different order. They offer low absolute mag-
nitude error in the approximation of the differentiator but
with a higher order [9–15].

Another aspect of low complexity is its implementation
in different realization structures. The most preferred re-
alization structures comprise direct form-II (DF-II), cas-
cade, parallel, and lattice forms of realizations. Each real-
ization structure has its own merits and demerits. These
structures may be coefficient sensitive, which produces a
high quantization noise. An alternative realization to the
conventional realizations must be investigated to provide
low quantization noise [16].

In this work, an optimal design of low-order IIR dig-
ital differentiator is proposed. The design has been de-
rived after optimizing the second-order transfer function
in the L1 -sense error function. The obtained design ap-
proximates the ideal differentiator with the least absolute
magnitude error in the region of interest. The realization
structure of the proposed design has also been investi-
gated to discuss low noise behavior.

2 Problem formulation and design

Mathematically, the ideal digital differentiator can be
written as

Hdiff(ω) = jω , −π ≤ ω ≤ π , (1)

where ω is the angular frequency and j =
√
−1. It is

recursively characterized and approximated by a N -order
IIR digital system as [16]

y(n) = −
N−1
∑

k=0

αky(n− k) +

M−1
∑

k=0

βkx(n− k) , (2)

where αk and βk are the coefficients of the digital sys-
tem. The z -domain representation of the canonic transfer
function of leads

H(z) =

∑M
k=0 βkz

−k

∑N
k=0 αkz−k

. (3)
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Fig. 1. Magnitude response of Hdiff(z) and Hprop(z)
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With α0 = 1, system function of the generalized second-
order canonic digital differentiator can be written as

H(z) = k
B0z

2 +B1z +B2

z2 −A1z −A2

. (4)

The generalized transfer function’s five coefficients, B0,
B1, B2, A1, and A2, as well as the constant multiplier
k , can be optimized for the second-order digital differen-
tiator to reduce the absolute error between the ideal and
approximative magnitude response. The error function E
can be defined as

‖E‖ =
∑

ω

|(|Hdiff(ω)| − |H(z)z=ejω |)| , (5)

where ‖·‖ provides norm of function. The L1 -norm based
error objective function is utilized to optimize the trans-
fer function’s variables because at discontinuity points, it
offers smooth response with reduced overshoot and rip-
ples [13].

3 Hybrid optimization for the

design of digital differentiator

This section gives a short description of the hybrid
optimization consisting of particle swarm optimization
(PSO) and simulated annealing optimization technique.
To achieve the best results, the error objective func-
tion based on L1 -norm provided in (5) has been mini-
mized and assessed at each iteration. PSO is a problem-
independent stochastic search optimization technique,
which is its fundamental advantage, but its stochastic
character causes it to expose a lack of global searching
capability at the end of a run. Whereas SA is a heuristic-
based global search optimization technique which accepts
both weaker and superior candidate solutions during the
search process. Therefore, the integration of PSO with
SA balances the required tradeoff between exploring and
exploitation of the search spaces [7]. The metropolis cri-
terion of choosing the solution can be written as

a(x) =

{

1 if δE ≤ 0 ,

e−δE/T if δE ≥ 0 ,
(6)

where T denotes the system’s current temperature and
δE is the change in energy caused by a parameter per-
turbation. In order to verify the (6), a random number
ρ ∈ [0, 1] is created, and its equality with ρ ≤ a(x) is
tested. Here, an appropriate cooling schedule based on
adaptive simulated annealing (ASA) is presented to up-

date the system’s temperature [8]. Therefore, for kth it-
eration the annealing schedule can be formulated as

T (K) = T (0)eCkQ/D

, (7)

where T (0) and D stand for the initial temperature,
quenching factor, respectively, and D denotes the search
space dimension. Finally, to save execution time and com-
putational effort, the appropriate number of iteration and
other control parameters have selected. In control pa-
rameters, with a population size of 150, the coefficient’s
lower and upper bounds are constrained to be between
−1 and 1. The other parameters have been set as iner-
tia weight (ω) = 0.9 | 0.4, initial temperature (T0) = 50,

minimum temperature (Tmin) = 10−10 and cooling sched-
ule (c = 0.01), Q = 0.01.

4 Analysis

4.1 Simulation analysis and the comparison with the

existing second-order digital differentiator

The optimized values for B0 , B1 , B2 , A1 , A2 and
constant multiplier k are obtained as 0.754, 0.179,
−1.698, 1.990, 0.178 and 1.289 respectively. The trans-
fer function can be written as

Hprop(z) = 1.289
0.754z2 + 0.939z − 1.698

z2 + 1.990z + 0.178
. (8)

The poles location of (8) are determined to be −1.8961
and −0.0941 in order to address stability concerns. Since
the system is unstable due to the pole at z = 1.896, the
pole reflection approach is employed to stabilize the sys-
tem without compromising its magnitude response and
associated magnitude errors [9]. Therefore, the suggested
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Table 1. Statistical comparison

Technique
SAME SAME

0 ≤ ω ≤ 0.92π 0 ≤ ω ≤ π

Al-Alaoui 2011 (SA), [10] 9.98 13.03

Jain et al. 2012 (GA), [11] 0.84 1.72

Apoorva et al. 2017 (PSO), [14] 1.21 3.08

Goswami et al. 2022 (MVO), [15] 0.86 1.60

Proposed (PSO-SA) 0.43 2.06
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Fig. 3. Direct form-II realization
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Fig. 4. Unscaled direct wave-form realization

second-order differentiator’s transfer function can be re-
written as

Hprop(z) =
[

1.289
0.754z2 + 0.939z − 1.698

(z + 1.896)(z + 0.094)

]

=
[

1.289
0.754z2 + 0.9395z − 1.698

(z + 1.896)(z + 0.094)

]

×
[ z + 1.896

1.896z + 1

]

Hprop(z) =

[

1.289
0.754z2 + 0.939z − 1.698

1.896z2 + 1.178z + 0.094

]

. (9)

The magnitude response of the proposed design is plot-
ted in Fig. 1, where it approximated the ideal response
for almost the entire Nyquist region. The comparison of
the absolute magnitude error of the proposed design and
the existing design with the ideal response is plotted in
Fig. 2.

Existing designs based on the optimization technique
bestow the optimum correlation and provide the low mag-
nitude error. The proposed designs confer the least mag-
nitude error from 0.001π to 0.92π . The enlisted sum of
absolute magnitude error (SAME) in Tab. 1 also confirms
the eminence of the proposed design. The SAME of the
proposed design is calculated as 0.428 for 0 ≤ ω ≤ 0.92π
which is the least among others. Therefore, the pro-
posed designs perform better and outrange the other
optimization-based designs.

4.2 Realization structures for the digital differentiator

The generalized transfer function of (4) can be rewrit-
ten as

H(z) = B0 +
α1z + α2

z2 −A1z −A2

, (10)

where α1 = B1 + A1B0 and α2 = B2 + A2B0 can
be calculated from (9). The obtained transfer function
has five degrees of freedom and can be implemented us-
ing direct form-II as shown in Fig. 3. It is the most
widely used structure as it provides flexibility and sim-
plicity. However, it is sensitive to the coefficient quanti-
zation and noise gain performances in fixed-point appli-
cations [5]. The optimal form and the normal form may
be applied to mitigate the noise gain, but they utilize the
extra degree of freedom to achieve it. Besides, they are
not a straightforward implementation in terms of multi-
plier and coefficients. Therefore, another alternative di-
rect waveform (DWF) structure can be used to realize
the proposed design as it has a direct relationship be-
tween the transfer function’s coefficients and DWF coef-
ficients. Therefore, to acquire direct wave-form represen-
tation first (4) must converted into its appropriate repre-
sentation of state-space followed by corroding similarity
transformations [19].

In DWF realization, the proposed transfer function
consisting five coefficients γ1 , γ2 , η1 , η2 , d with con-
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stant k can be obtained directly from direct form-II

coefficients using relation as γ1 = 1/2(1 − A1 − A2),
γ2 = 1/2(1 + A1 − A2) and η1 = 1/2(B0 + B1 + B2),

η2 = 1/2(B0 − B1 + B2). The application of L2 scal-
ing makes this structure overflow stable, therefore in or-

der to scale DWF structure two extra multiplier have

been introduced as 1/
√
K11 =

√

γ1(2− γ1 − γ2) and

1/
√
K22 =

√

γ2(2 − γ1 − γ2). Figure 4 depicts the scaled
direct wave-form structure with their respective scaled

coefficients [19].

4.3 Noise gain analysis

For calculating the noise power, the summation nodes
quantizers at the output of the proposed digital differ-

entiator structure must be analyzed. These quantizers
provide the noise with the power of q2/12 at the re-

spective points. The output noise is calculated by the
power gains, which require the observability matrix W =
∑

∞

k=0(CAk)t(CAk). The principal diagonals provide the

required power gain for calculating the noise gain. There-
fore, the noise gain (G) is just the trace of this matrix

G = tr(W ). However, it results in is the unscaled noise,
which raises the problem of the overflow of the states.

Therefore, to prevent the overflow and improve the noise

gain behavior, scaling must be done. It requires the con-
trollability matrix K which can be defined recursively
as K =

∑

∞

k=0(A
kB)(AkB)t . The principal diagonal ele-

ments are the power gains from input to the states. There-
fore the noise gains after scaling yields [20, 21]

G = K11W11 +K22W22 . (11)

This work compares the realization perspective in
terms of the conventional DF-II and the DWF structure.

4.3.1 N o i s e g a i n a n a l y s i s f o r d i r e c t
f o r m-I I s t r u c t u r e

GSDF-II =

(1−A2)
2α2

1 + (1−A2)
2α2

2) + 2A1(1 −A2)α1α2

(1 +A2)2(1−A1 −A2)2(1−A1 +A2)2
. (12)

The incorporation of term B0 leads the change the power

gain which results in noise gain for DF-II

GDF-II =

GSDF-II +
B2

0(1−A2)

(1 +A2)(1−A1 −A2)(1−A1 +A2)
. (13)

Hence, the noise gain calculated for the proposed digital

differentiator from the DF-II coefficients results in 5.885.

4.3.2 N o i s e g a i n a n a l y s i s f o r d i r e c t
w a v e-f o r m s t r u c t u r e

The noise gain of L2 -scaled DWF

Gw = K11wW11w +K22wW22w . (14)

The controllability matrix (Kw ), which proves to be
diagonal, can be written as

Kw =
1

4γ1γ2(2 − γ1 − γ2)

[

4γ2 0
0 4γ1

]

. (15)

The stability constraints are bounded by γ1, γ2 ≥ 0,
2 − γ1 − γ2 ≥ 0. The observability matrix can be define
as Ww = T t

wWTw , where W is the observability matrix
of SDF-II. Calculating the diagonal entries of Ww and
using diagonal entries of Kw with (14) yields the noise
gain for DWF structures as [15]

GSDF-II =
(g1α

2
1 + g2α

2
2) + g3α1α2

(1 +A2)2(1−A1 −A2)2(1 −A1 +A2)2
, (16)

where

g1 = (1 +A2
2)(1− A2)

2 −A2
1 +A2

1(1 +A2)
2, (17)

g2 = 2(1−A2)
2 −A2

1 +A2
1(1 +A2)

2, (18)

g3 = 2a(A1 −A2)
2 −A2

1 + 2A1(1−A2)(1 +A2)
2. (19)

From (9) and (16)-(19), The noise gain based in Fig. 4
of the proposed digital differentiator is calculated as
2.0679, which shows the improvement of 64.88% com-
pared to the direct form-II structure shown in Fig. 3.
Therefore, it is observed that the DWF structure shows
less noise gain than the DF-II structure for the proposed
digital differentiator design.

5 Conclusion

This manuscript has presented an optimum design and
low noise realization of the IIR digital differentiator. The
design entails using the hybrid optimization method to
optimize generalized second-order transfer function co-
efficients with an error objective function based on the
L1 -norm. The design performs better than the current
IIR differentiator designs in the region of interest, giv-
ing SAME 0.4281 and 2.0463 for 0 ≤ ω ≤ 0.92π and
0 ≤ ω ≤ π , respectively. The investigation for the real-
ization structures for the proposed design has also been
discussed and DWF structure provides the improvement
of 64.88% in noise gain as compared to the conventional
direct-II from realization. Therefore, it has been con-
cluded that the L1 -PSO-SA based digital differentiator
design with its direct wave-form-based realization pro-
vides computational efficacy in real sense.



336 Om P. Goswami, A. Shukla, M. Kumar: OPTIMAL DESIGN AND LOW NOISE REALIZATION OF DIGITAL DIFFERENTIATOR

References

[1] P. Laguna, N. V. Thakor, P. Caminal, and R. Jane, “Low-pass

differentiators for biological signals with known spectra: applica-

tion to ECG signal processing”, IEEE Transactions on Biomed-

ical Engineering, no. 4, pp. 420-425, April 1990.

[2] A. Agrawal, V. Goyal, and P. Mishra, “A novel augmented frac-

tional order fuzzy controller for enhanced robustness in non-

linear and uncertain systems with optimal actuator exertion”,

Arabian Journal of Science and Engineering, Springer, no. 10,

pp. 10185-10204, 2021.

[3] M. A. Al-Alaoui, “Novel FIR approximations of IIR differen-

tiators with applications to image edge detection”, 18th IEEE

International Conference on Electronics, Circuits, and Systems,

Beirut, 554-558, 2011.

[4] M. A. Al-Alaoui, “A class of second-order integrators and

low-pass differentiators”, IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications, no. 4, pp. 220

–223, 1995.

[5] N. Q. Ngo, “A new approach for the design of wideband digital

integrator and differentiator”, IEEE Transactions on Circuits

and Systems II: Express Briefs, no. 9, pp. 936 –940, 2006,.

[6] P. Singh, V. Goyal, V. K. Deolia, and T. N. Sharma, “Slid-

ing mode control of uncertain nonlinear discrete delayed time

system using Chebyshev neural network”, Advances Computer

and Computational Sciences, Advances Intelligent Systems and

Computing, Springer, vol. 553.

[7] C. Tseng, “Closed-form design of digital IIR integrators using

numerical integration rules and fractional sample delays”, IEEE

Transactions on Circuits and Systems I: Regular Papers, no. 3,

pp. 643 –655, 2007.

[8] S. Pei and H. Hsu, “Fractional bilinear transform for ana-

log-to-digital conversion”, IEEE Transactions on Signal Process-

ing, no. 5, pp. 2122-2127, May 2008.

[9] M. A. Al-Alaoui, “Class of digital integrators and differentia-

tors”, IET Signal processing, no. 2, pp. 251-260, https://doi.org

/10.1049/ietspr.2010.0107, 2011.

[10] M. Jain, M. Gupta, and N. Jain, “Linear phase second order re-

cursive digital integrators and differentiators”, Radio Engineer-

ing Journal, no. 2, pp. 712–717, 2012.

[11] N. Bansal, V. K. Deolia, A. Bansal, and P. Pathak, “Compar-
ative analysis of LSB, DCT and DWT for Digital Watermark-

ing”, 2nd International Conference on Computing for Sustain-

able Global Development, pp. 40-45, 2015.

[12] M. A. Al-Alaoui, “A class of second-order integrators and

low-pass differentiators”, IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications, no. 4, pp. 220
–223, 1995.

[13] A. Aggarwal, T. K. Rawat, and D. K. Upadhyay, “Optimal de-

sign of L 1-norm based IIR digital differentiators and integra-
tors using the bat algorithm”, IET Signal Processing, no. 1,

pp. 26-35, 2017.

[14] A. Sharma, R. Chaturvedi, and A. Bhargava, “A novel opposi-
tion based improved firefly algorithm for multilevel image seg-
mentation”, Multimed. Tools Appl, pp. 15521–15544 2022.

[15] O. P. Goswami, T. K. Rawat, and D. K. Upadhyay, “L1-norm

-based optimal design of digital differentiator using multiverse
optimization”, Circuits, Systems, and Signal Processing, 2022.

[16] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time

Signal Processing, 1999.

[17] S. Dhabal and P. Venkateswaran, “Two-dimensional IIR filter
design using simulated annealing-based particle swarm optimiza-
tion”, Journal of Optimization, 2014, Article ID 239721, 2014.

[18] F. Zhao, Q. Zhang, D. Yu, X. Chen, and Y. Yang, “A hybrid
algorithm based on PSO and simulated annealing and its appli-
cations for partner selection in virtual enterprise”, Proceedings

of the International Conference on Advances Intelligent Com-

puting, 380 –389, Springer, 2005.

[19] J. H. F. Ritzerfeld, “The direct waveform digital filter structure:

an easy alternative for the direct form”, Proceedings of the 15th

ProRISC, Annual Workshop on Circuits, Systems and Signal

Processing, pp. 133–137.

[20] L. Sajewski, “Positive minimal realization of continuous-discrete

linear systems with all-pole and all-zero transfer function”, Acta

Mechanica et Automatica, no. 1, pp. 42–47, 2014.

[21] J. H. F. Ritzerfeld, “Noise gain expressions for low noise sec-

ond-order digital filter structures ”, IEEE Transactions on Cir-

cuits and Systems II: Express Briefs, vol. 52, no. 4, pp. 223–227,
2005.

Received 12 September 2022


