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Abstract
There has been a lot of interest in utilizing remote sensing images to anticipate landslides.
We propose a novel framework for automatic landslide detection and landslide region
localization from the input remote sensing image. The framework consists of pre-
processing, dynamic segmentation, automatic feature extraction, classification, and local-
ization. The pre-processing is the integrated step that performs atmospheric corrections,
geometric corrections, and unnecessary region removal with denoising using 2D median
filtering. The pre-processed image is then segmented using the dynamic segmentation
approach to extract the Region of Interest (ROI). We propose lightweight Convolutional
Neural Network (CNN) layers for automatic feature extraction and scaling using the
ResNet50 model. The CNN layers are designed systematically for automatic feature
extraction to improve accuracy and reduce computational requirements. The Long-
Term Short Memory (LSTM), Artificial Neural Network (ANN), and Support Vector
Machine (SVM) classifiers are designed to perform the landslide prediction. If landslides
are forecast, the post-processing stages are intended to identify potential landslide
locations. The experimental results show that the proposed CNN-LSTM model
outperformed the existing solutions in terms of accuracy, F1 score, precision, and recall
rates. The experimental outcomes reveal that the proposed model improves the overall
prediction accuracy by 2% and reduces the computational complexity by 35% compared
to state-of-the-art methods.
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1 Introduction

Landslides are among the most harmful natural disasters, destroying houses and infrastructure
and killing many innocent people [7]. The International Landslide Center at Durham Univer-
sity in the UK estimates 2620 deadly landslide episodes between 2004 and 2010, killing
32,322 persons [25]. Asia has more landslides than other locations. In Asia, landslides killed
around 18,000 people and impacted 5.5 million between 1950 and 2009. China had 695
landslide-related deaths in 2007, according to Durham University’s International Landslide
Center. India, Indonesia, Bangladesh, Vietnam, and Nepal followed China [29]. In the
Himalayas and Vietnam, landslides occur following severe rains, causing human deaths and
property and infrastructure damage. Remedial procedures including retaining walls, anchor
systems, lowering slope steepness, covering slopes with steel networks, etc. might lessen
landslide dangers. Other ways to prevent landslides include reducing the weight on steep
slopes, preventing groundwater from rising in slope-forming material, and covering unstable
slopes with impermeable membranes [21, 28]. These solutions are only relevant to local or
minor unstable slopes. Regional land use planning, decision-making, and early warning
systems can decrease landslide frequency and severity. High-risk landslide areas are often
discovered through hazard assessment and mapping. Landslide hazard research relies heavily
on geo-informatics methods like Remote Sensing (RS) and Geographic Information Systems
(GIS) [21, 28, 43, 44].

GIS is a powerful geographical analysis application that also includes graphics image
processing and spatial data management capabilities, among other things [44]. The GIS is
used to combine and handle all forms of landslide information. When used for landslide
monitoring and modeling, remote sensing technologies paired with GIS can perform a variety
of functions, including data collection, analysis, evaluation, and visualization [44]. Recently,
many GIS-based systems for landslide hazard modeling have been designed [1, 10, 12–14, 17,
23, 26, 31, 33, 34, 39]. Many of which incorporate machine learning approaches such as Fuzzy
Logic [1, 39], Neuro-Fuzzy [23, 33, 34], ANN [12–14], SVM [26, 31], and Decision-Tree
Models [10, 17]. Many studies [19] made use of RS images for landslide prediction, detection,
and localization, employing a variety of image processing and machine learning algorithms to
achieve success. It was possible to spot changes in landslide images taken before and after the
disaster by employing several techniques such as thresholding, binary temporal methods,
texture analysis, etc. [19]. Although all of these methods [1, 10, 12–14, 17, 23, 26, 31, 33,
34, 39] were capable of scaling up to large numbers of image graphs, they suffered from
significant limitations. As such methods used to evaluate conventional images could not be
directly applied to RS images, it significantly results in poor accuracy and efficiency. Simi-
larly, we have studied some other domain prediction methods [3, 4] during this study. The RS-
based image processing techniques [6, 16, 20, 45] have recently been presented using various
computer vision methods.

Predicting landslides with RS images has gained popularity since it uses real-time visual
data. Lack of data and expertise about landslide locations, especially in western and northern
India, poor methodologies for interpreting landslide images, erroneous landslide evaluations,
and challenging localization of landslide changes are hurdles [32]. Landslide prediction or
localization using artificial characteristics or spatial information fails because it’s hard to
construct spatial regularities exclusively associated with landslides. The current study offers
a thresholding approach for autonomous landslide identification [11]. Improved landslide
prediction and localization are needed. Using machine learning and deep learning, early
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landslide prediction is possible. The machine learning methods heavily relied on handcrafted
features, whereas the deep learning models automatically extract the features using the pre-
trained models [22]. Therefore, deep learning delivered a more efficient and user-friendly
approach compared to machine learning techniques [8].

The automated prediction of landslides ensures that proper attention is paid to
avoiding financial and human losses. Deep learning takes a longer duration to complete
dataset training and detection since it is a completely automated feature learning and
extraction approach. As a result, such solutions are not reliable and scalable to process
large datasets. The reliability of using deep learning models is affected by higher
prediction time. The system becomes unreliable as the decision-making system has to
wait for a longer time. The long training duration using deep learning also affects the
scalability as larger datasets require high computational efforts. Because of its improved
accuracy and feature representation, deep learning techniques such as convolutional
neural networks (CNN) have gained popularity for a variety of applications [8, 11, 22,
32, 36]. However, computational complexity is a significant research issue when
employing CNN. Because each RS image has a high-dimensional feature space, CNN
has greater computational complexity.

Novel lightweight 2D CNN layers are proposed in this paper for the automatic feature
extraction from the ROI RS image. The high-dimensional feature space is then normalized
using the appropriate scaling technique to enhance the prediction accuracy. The proposed
CNN layers are designed in such a way that it reduces the overall computation efforts while
ensuring higher accuracy. Before CNN, we performed the pre-processing of RS images
using the Normal Digital Vegetation Index (NDVI). The corrected RS image is then
segmented using a dynamic thresholding mechanism. The normalized features of CNN
are fed to the different classifiers SVM, KNN, and LSTM. The post-processing phase of the
proposed model is designed to localize the landslide predicted regions in the input RS
image. The remainder of the paper consists of the below sections. Section 2 described the
related works on landslide prediction. Section 3 presented the detailed methodology of this
paper. Section 4 presented the simulation results and analysis. Section 5 presented the
conclusion and suggestions.

2 Related works

Due to global warming, seasonal and non-seasonal heavy rainfalls become challenges to the
universe. The challenges become severe in the rainfall regions. Thus, it becomes essential to
have an automated mechanism that periodically analyzes such landslide hazards and intimate
the warnings to save the losses. The GIS and RS satellite information are used to monitor the
possible prediction of landslides. This section presents the recent studies [2, 5, 9, 15, 18, 24,
27, 30, 35, 37, 38, 40–42, 46] for landslide prediction using machine learning and deep
learning techniques.

2.1 Machine learning methods

Landslides were identified using multi-scale image segmentation and machine learning algo-
rithms in recent research [37]. They suggested a unified system for landslide detection that
combined item-based image analysis (OBIA) with machine learning (ML)
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methodologies such as multilayer perception neural community (MLP-NN), random
forest (RF), and logistic regression (LR). Before employing device learning algo-
rithms, the multi-scale segmentation methodology was established. In [24], the
authors have offered another innovative OBIA-based solution for landslide detec-
tion using LiDAR-derived data. However, the author feels that using the OBIA
approach to identify agricultural landslides remains difficult. Because of restricted
terrain vision in forest areas and a lack of high-resolution DEM data, while
analyzing landslides, the categorization is incorrect. Their technique of detection
failed to correctly and completely identify the landslide. Using publicly available
geodatabases, machine learning and deep learning techniques were used to detect
landslides [42]. Geological, topography, and rainfall data were collected for the
landslide analysis. They used classifiers like SVM, random forest, logistic regres-
sion, and CNN directly. A lack of adequate computer vision techniques limited the
accuracy performance. To reduce the computational dimension and balance the generali-
zation of the model and learning power, a landslide prediction approach based on improved
principal component analysis (PCA) and the least-squares supports vector regression
(LSSVR) model had described in [15]. The lack of RS image pre-processing and ROI
extractions, however, restricts the effectiveness of this method. Introduced two road
features in [46], road profile and road aspect, to increase the accuracy of landslide
susceptibility mapping by accounting for the influence of landslide movement direction
on road. To detect landslides on a given dataset, they used a random forest classifier. To
evaluate the performance of U-Net and machine learning methods for automated landslide
identification in the Himalayas, two datasets were created [18]. A small dataset of 239
samples was obtained from six training zones and one testing zone to investigate the
performance of the fully convolutional U-Net model, random forest, SVM, and KNN
classifiers. The scalability of the recommended classifiers had not supported by the small
sample set. Due to a lack of appropriate computer vision algorithms, the accuracy perfor-
mance had restricted. Another recent study [30] used five classifiers to assess landslide
vulnerability and regional difference throughout the whole Qinghai-Tibetan Plateau (QTP)
region: SVM, random forest, logistic regression, naive Bayes, and deep neural network
(DNN). It has the same limitations as [15, 18, 24, 30, 37, 42, 46].

2.2 Deep learning methods

In [41], the NDVI and Near-Infrared Spectroscopy (NIRS) methods were applied to the RS
images for the pre-processing before applying the CNN for the prediction. The band values
indicating the changing features of the landslide were found by integrating the red, green, blue,
and near-infrared bands of the pre-landslide remote sensing images with the 4 bands of the
post-landslide imagegraphs and NDVI images to create images with 9 bands. CNN had
designed to detect landslides. The authors of [40] concentrated on merging the most recent
image recognition algorithms with the finest publicly accessible satellite images to develop
a system for landslide risk reduction utilizing the 3D CNN model. In [5], the landslide
localization mechanism had designed using the CNN and image transform techniques. A
CNN had utilized to categorize satellite images that contained landslides. To effectively
detect landslides under diverse illumination situations, the transformation technique Hue –
Bi-dimensional empirical mode decomposition (H-BEMD) was suggested to calculate the
landslide region and magnitude from categorized landslide images. In [2], the CNN-DNN
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model had designed for mapping landslide susceptibility. They analyzed CNN-DNN in the
Iranian region of Isfahan, which had never been tested on such a large scale before. The
proposed model had trained and validated utilizing datasets comprising pertinent data on
past landslides, RS images and field reports, and a variety of geology, geomorphological,
human activity, and environmental variables as covariates. The distant domain transfer
learning (DDTL) had proposed in [27] for the detection and classification of landslides. The
scene categorization had originally used in the landslide detection job for satellite image
classification. The attention mechanism to DDTL (AM-DDTL) had used to extract information
from satellite images more successfully. In [35], a new landslide detection method based on an
unsupervised deep learning model had developed. To cope with the challenge of minimal
labeled data for training, the authors created an unsupervised learning model using a
convolutional auto-encoder (CAE). Without requiring training data, the CAE had used to learn
and extract abstract and high-level features. In [38], CNN and Recurrent Neural Network
(RNN) were applied for the landslide susceptibility mapping using the dataset of Iran landslide
regions. Both CNN and RNN algorithms were designed to produce the susceptibility maps of
the landslide using the available training data. To detect landslides, recently the deep learning
technique was integrated [9] with rule and object-based image analysis (OBIA). The ResU-Net
model was designed and evaluated using the Sentinel-2 dataset.

2.3 Problems identification

In the above section, we have reviewed the recent machine learning and deep learning-based
techniques for landslide prediction from the input RS images. The main problems of recent
studies are summarized below.

& The machine learning-based methods [15, 18, 24, 30, 37, 42, 46] delivered the landslide
prediction with poor accuracy and reliability performances, but it takes minimum compu-
tational requirements. The deep learning-based studies [2, 5, 9, 27, 35, 38, 40, 41]
delivered the complete automated approach to landslide prediction with improved accu-
racy but suffered from high computational requirements.

& The availability of real-time data is a serious difficulty, particularly in India’s
landslide zones. There is a lack of prominent and scalable Indian landslide RS
images datasets that includes landslide and non-landslide data of the same area in
different time series.

& The majority of previous landslide prediction techniques were applied straight to sensor
images, with no atmospheric modifications, geometric corrections, or superfluous regions
removed. Estimates of changing landslide characteristics were not retrieved successfully,
affecting total accuracy.

& The landslide prediction with the accurate localization of the landslide regions in the input
RS images is another limitation of the existing methods.

2.4 Contributions

We proposed a novel and automatic landslide prediction and localization framework using the
lightweight deep learning model and computer vision techniques. The novelty of the proposed
model is described in the below contributions.
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– We collected the scalable real-time pre-landslide and post-landslide RS images of western
India landslide regions (Maharashtra and Goa) directly from the Linear Imaging Self
Scanning (LISS-3) satellite in the Bhuvan web portal “https://bhuvan.nrsc.gov.in/home/
index.php”.

– We constructed the pre-processing and dynamic segmentation stages to perform
geometric and atmospheric correction, noisy content removal, and extraction ROI
utilizing multiple bands to predict the changing landslide features from the input RS
image.

– We proposed the lightweight integrated deep learning model for the automatic features
extraction and prediction using CNN (for features extraction) and LSTM (for classifica-
tion). The proposed CNN-LSTM model addresses the challenges of higher computational
time and error rates.

– After the landslide has been predicted, a post-processing phase is suggested to localize the
landslide areas in the input ROI image utilizing morphological operations and the results
of dynamic segmentation.

– The performance of the proposed framework CNN-LSTM is measured by dividing the
collected dataset into 70% training and 30% testing and evaluated with other classifiers
ANN and SVM

3 Proposed methodology

In this section, we discuss the design and methods of the proposed autonomous landslide
prediction and localization framework. Figure 1 shows the overall functionality of the
proposed framework that consists of core blocks such as preprocessing, ROI extraction,
automatic feature extraction, prediction, and localization. Before these stages, we gathered
real-time RS images of the Western India research region into two categories: pre-landslide
(normal) and post-landslide (affected). Each RS image consists of four bands such as R, G,
near-infrared (NIR), and shortwave infrared (SWIR). The collected real-time dataset has
been divided into training and testing. As shown in Fig. 1, the acquired RS image is first
preprocessed to produce the NDVI output image. To extract the ROI-specific features, we
segmented the NDVI image using dynamic thresholding and morphological operations.
The automatic features of the ROI image are extracted using the pre-trained ResNet50
model of CNN. We designed lightweight CNN layers such as the 2D convolutional (Conv.)
layer, ReLU layer, max-pooling layer, and scaling layer (additionally designed) to reduce
the overall training and testing time. The extracted automatic features are directly fed to
another deep learning algorithm, LSTM, sequentially for the prediction of the landslide
possibilities from the input RS images. If the predicted outcome is the possibility of a
landslide, then we perform the postprocessing operations to localize the affected landslide
regions in that area.

3.1 Study area and dataset

The study area is in western India’s Konkan region. The Konkan area runs for around 100 km
along with Maharashtra’s, Goa’s, and Karnataka’s western coasts. The Western Ghats Moun-
tain range borders it on the east, the Arabian Sea on the west, the Daman Ganga River on the
north, and the Aghanashini River on the south. The RS samples came straight from the LISS-
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III satellite and are divided into two states: Maharashtra and Goa. The LISS-III images include
four resolution bands: R, G, SWIR, and NIR [2]. Across the distinct periods, samples are
collected for the landslide zones, which include pre-landslide and post-landslide. The whole
specification of the obtained dataset is shown in Table 1.

Fig. 1 Proposed architecture for automatic landslide prediction and localization

Table 1 Dataset specification

Regions Normal (pre-landslide) Landslide (post-landslide) Total samples

Maharashtra 355 1025 1380
Goa 355 978 1333
Western Region 710 2003 2713
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3.2 Pre-processing

Computer vision algorithms are developed in this work to do pre-processing, ROI extraction,
and feature extraction. Previously, we modified the LISS-3 sensor’s input RS images geomet-
rically and atmospherically. Geometric adjustments are made using the ERDAS tool’s control
points. The Chavez radiometric correction technique was used to the input RS image to reduce
atmospheric influences. Then, using the adjusted RS image, we extract bands like visible NIR
and visible R to do the NDVI. The pre-processing stage of NDVI is utilized to fine-tune the
geometric regions, water, and vegetation. The steps below explain how the pre-processing
phase works.

Let S is the input RS image collected from the LISS-3 satellite in the given study area. We
corrected the initial geometric and atmospheric effects for each RS image S in the dataset.
After that, we performed band extraction and NDVI computation. The NDVI of the S is
computed using the spectral band R (3) and NIR (4).

R ¼ double S :; :; 3ð Þð Þ ð1Þ

NIR ¼ double S :; :; 4ð Þð Þ ð2Þ

We used 2D median filtering to denoise the image after extracting the 2D image bands. The
median filtering method is used to eliminate noise from corrected bands. The 2D median
filtering algorithm moves through the image pixel by pixel, replacing each value with the
median value of the surrounding pixel. The size of the window determines the design of the
neighbor. In this study, the window size of a 3-by-3 neighborhood is employed.

R1 i; jð Þ ¼ median R i; jð Þj i; jð Þ∈wf g ð3Þ

NIR1 i; jð Þ ¼ median NIR i; jð Þj i; jð Þ∈wf g ð4Þ
where, R1 and NIR1 is outcome of median filtering and w is the size of window. Finally, the
we computed the NDVI by:

NDVI ¼ NIR1−R1ð Þ
NIR1þ R1ð Þ ð5Þ

Figures 2 and 3 demonstrate the visual results of the preceding stages for two RS images 1 and
2, respectively. The input RS image is represented as Coloured IR (CIR) in Figs. 2 and 3. This
CIR image was already geometrically and atmospherically corrected. The visible red and NIR
bands were extracted from the CIR image. The intrinsic noise components in these bands were
suppressed via median filtering. Finally, the NDVI image had constructed by filtering the red
and NIR bands.

3.3 Dynamic segmentation

The NDVI image is provided to the proposed dynamic segmentation method to extract the
ROI. We used the simple dynamic threshold-based binary segmentation approach. The
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dynamic threshold for each input NDVI image is computed using the graythresh () MATLAB
function. According to the threshold value, the rough ROI is extracted from the NDVI in
binary form.

Fig. 2 Outcomes for the pre-processing of RS image 1

Fig. 3 Outcomes for the pre-processing RS image 2
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t ¼ graythresh NDVIð Þ ð6Þ

To estimate the ROI, the below steps are performed for NDVI of size m x n.

ROI ¼ NDVI i; jð Þ > tð Þ; i ¼ 1; 2;…m; j ¼ 1; 2;…n ð7Þ

where, t represents the threshold value, m represents the height of the image, n represents the
width of the image, i represents the row pixel position, and j represents the column pixel
position.

Unwanted items may be present in the ROI image. As a result, we used morphological
techniques to improve the ROI output. The radius of the morphological disc structural element
is set at 3. This structural component is critical in the morphological close process. The
morphological closure operation is carried out using the result of the structural element (SE)
function. The morphological close operation is a dilatation followed by an erosion, both of
which use the same structural element. Equations (8) and (9) below summarise the steps.

SE ¼ strel ROI ; 3ð Þ ð8Þ

where, SE represents the structuring element matrix and strel (.) represents the morphological
function to extract the SE.

Using this structuring of the element SE, we refine the current ROI image using the
morphological close operation to produce the final ROI.

ROI ¼ imclose ROI ; SEð Þ ð9Þ

where, ROI represents the refined ROI image and imclose (.) is morphological function to
perform close operation.

3.4 Automatic features extraction

This section presents the proposed lightweight design of automatic feature extraction using
the ResNet50 model. Figure 4 and Table 2 demonstrate the layers designed in the existing
CNN model to reduce the computational efforts and increase the prediction accuracy. As
shown in Fig. 4, the 2D ROI image is fed to the input layer of size 224 × 224 of the CNN.
After ROI extraction, we transformed the original size of the ROI image into 224 × 224. As
this CNN model had designed using the ResNet 50 pre-trained system, it takes 224 × 224
sized 2D images as input. The initial ResNet50 model is made up of 50 deep layers that
were trained on the regular ImageNet dataset. ResNet50 is more powerful compared to
other CNN models for automated feature extraction because of its quick processing speed
and low memory needs.

To reduce the overall training and testing time, the CNN layers are designed in such a way
that it takes minimum time. The proposed design consists of layers such as an input layer,
convolutional layer (Conv), max-pooling layer (MPL), four residual blocks (Res), and Mean
Normalized Pooling (MNP) layer. The Conv layer uses a variety of kernels to convolve the
feature vectors to acquire high-level semiotic data. The max-pooling layer was then used to
reduce the size of the Conv layer feature vectors. Every residual block (Res 1 to Res 4) has
three blocks instead of two. Each residual block in the original ResNet-50 model comprises
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three stacked convolution layers, such as 1 × 1, 3 × 3, and 1 × 1. The first 1 × 1 Conv layer
must lower the size of the feature vectors, the second 3 × 3 Conv layer must estimate the
feature vectors, and the third 1 × 1 Conv layer must raise the dimension of the feature vectors
again.

In a nutshell, the purpose of 1 × 1 Conv filters is to minimize and increase the size of
feature vectors. The number of filters in the original ResNet-50 model is more than in our
proposed model. The original filters in ResNet-50 are 64 in the Conv layer, 128 filters in Res 1
block, 256 filters in Res 2 block, 512 filters in Res 3 block, and 1024 filters in Res 4 block.
Whereas we modified the actual number of required filters in each layer by 50%, i.e., the
number of filters in the Conv layer is set to 32. Therefore, it reduces the significant training

Fig. 4 Lightweight CNN layers design for features extraction
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time and also reduces the number of extracted features for each input RS image. These
adjusted residual blocks result in stable network operations with a well-balanced feature set.
Each Conv layer is linked to the batch normalization layer for quick and efficient network
training. Another unique element of the proposed CNN model is the use of a feature
normalization method, known as MNP, in the final pooling layer. The 1024 × 1024 high
dimensional raw features matrix is delivered to this layer. We first transformed the 2D 1024 ×
1024 sized matrix into a 1D 1024 × 1 matrix using mean operation. After that, we performed
the feature selection using a Discrete Cosine Transform of size 128. It means DCT transforms
the 1024 × 1 matrix into a 128 × 1 matrix. Finally, the 128 × 1 feature vector has normalized
using the min-max scaling approach.

The mathematical representation of the proposed CNN layers is represented below in Eq.
(10). The input layer takes as input image ROI and performs the consolidated one squashing
function as per the design of each layer:

FCNN l
j ¼ tanh poolmax ReLU ∑

i
yl−1j ROIð Þ*kij

� �
þ blj

� �� �
ð10Þ

where,

& FCNN l
j is output of the Res.4 block using convolutional layer l of jth input of size 2D.

& yl−1j represents the previous convolutional layer features maps of ROI,
& kij represents ith trained convolutional kernels,

& blj represents the additive bias.
& tanh(.) represents the activation function,
& poolmax(.) represents the operation of max pooling for features extraction,
& ReLU(.) represents the operation of ReLU layer.

After that, we applied the final layer MNP to estimate the robust, reduced, and normalized
CNN feature for the input ROI image using next steps. We first applied the mean function in
Eq. (11).

Fmean ¼ mean FCNN� � ð11Þ

Table 2 Configuration of proposed CNN layers

Layer Layer Design Output Size

Input layer Input layer (224, 224) 224×224
Conv 32 7×7 Covn filters with Stride 2 (2S) 112×112
MPL 3×3 max pool, 2S 112×112
Res 1 64 1×1 Conv filters →ReLU 64 3×3 Conv filters →ReLU

128 1×1 Conv filters →ReLU
56×56

Res 2 128 1×1 Conv filters →ReLU 128 3×3 Conv filters →ReLU
256 1×1 Conv filters →ReLU

28×28

Res 3 256 1×1 Conv filters →ReLU 256 3×3 Conv filters →ReLU
512 1×1 Conv filters →ReLU

14×14

Res 4 512 1×1 Conv filters →ReLU 512 3×3 Conv filters →ReLU
1024 1×1 Conv filters →ReLU

7×7

MNP Mean Normalize Pooling, 1×128
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Then, the feature selection using DCT performed in Eq. (12):

Fdct ¼ dct Fmean; 128ð Þ ð12Þ
Due to considerable variability, a feature requires a longer convergence time for neural
networks. As a result, features scaling is necessary to improve speed and accuracy. In this
research, we used the min-max normalisation strategy as showing in Eq. (13), which scales
each feature from 0 to 1.

F ¼ Fdct−min Fdct
� �� �

max Fdct
� �

−min Fdct
� �� � ð13Þ

3.5 Landslide prediction

The next step of the proposed model is belonging to the prediction of the landslide that takes
inputs F of test RS image and pre-trained proposed CNN model. For the prediction, we
designed the deep learning classifier LSTM. As the dataset is divided into 70% training and
30% testing, the classier LSTM performs the classification of the 30% RS samples. As the
conventional classifiers such as ANN and SVM suffered from higher training and classifica-
tion errors due to vanishing gradient points, the LSTM deep learning classifier is preferred in
this paper. We introduced the LSTM classifier connected with the proposed CNN model. The
CNN does the automatic feature extraction and fed to the LSTM for the prediction for each
input RS image. Compare to SVM and ANN, LSTM also has minimum computational
complexity.

LSTM also consists of different layers for sequential learning and classification. LSTM
input layer receives F at current time interval t. LSTM layer is made up of input gate i, output
gate o, and forget gate f, and a memory cell c. For every time t, LSTM computes activations of
its gates {it, ft} and updates its memory cell from ct − 1 to ct, it then computes the activation of
output gate ot, and finally outputs a hidden representation ht. The hidden representation from
the previous time step is ht − 1. Following equations applied in LSTM for update functions:

it ¼ σ WiFr þ Uiht−1 þ Vict−1 þ bið Þ ð14Þ

f t ¼ σ W f Fr þ U f ht−1 þ Vict−1 þ b f
� � ð15Þ

ct ¼ f tΘ ct−1þit Θ tanh WcFr þ Ucht−1 þ Ucht−1ð Þ ð16Þ

ot ¼ σ WoFrþ Uoht−1 þ Vict−1 þ boð Þ ð17Þ

ht ¼ otΘ tanh ctð Þ ð18Þ
where, Θ represents an element-wise product, σ represents the logistic function, and tanh
represents the activation function. W∗, V∗, U∗, and b∗ represents the parameters at different
gates, and V∗ represents the weight matrix. The classification layer estimates the probabilities
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for each class and predicts the final prediction outcome. While for LSTM training, we set the
number of hidden layers to 50, the number of epochs to 50, minimum batch size 20, and
gradient threshold 10. The average training period using the proposed model was 3678 sec-
onds, and the number of training iterations required was 68. For the comparative study, we
have trained SVM and ANN classifiers on the CNN features using 10-cross fold validation and
10 hidden layered backpropagation neural network, respectively.

3.6 Landslide region localization

Landslide localization is yet another vital research challenge. With the prediction of landslide
possibility, it will be interesting if the exact landslide regions will be localized for the
appropriate conditions monitoring in real-time. In this paper, if the outcome of the prediction
step is landslide prediction, then we initiate the landslide region localization. According to the
result of landslide prediction, we utilized the ROI outcome and original CIR image as input to
localize the predicted landslide region. However, the ROI extracted from the NDVI image is
not sufficient for the accurate localization of landslide regions. Therefore, we further computed
the Normalized Difference Water Index (NDWI) using the median filtered green band and
NIR band. Figure 5 shows the functionality of the landslide localization. It is a relatively easy
method for locating landslide areas if the landslide is anticipated by the classifiers. It takes
inputs of median filtered R, G, and NIR bands. For NDVI, we already had outputs like the
NDVI image and its ROI extraction using the dynamic segmentation technique using Eq. (5)
and Eq. (9) respectively. During localization, we directly refer to the output of Eq. (9) as the

Fig. 5 Proposed architecture for the landslide region localization
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change detection output in the localization phase. For suspicious regions discovery, we have
computed the NDWI using the filtered G and NIR bands using Eq. (19).

NDWI ¼ G1−NIR1ð Þ
G1þ NIR1ð Þ ð19Þ

where, G1 is the median filtered 2D image of original G Band.
The dynamic threshold-based segmentation using Eq. (6)–(9) is applied on the NDWI

image to find the suspicious zone. Finally, the final localization output image was created by
fusing the change detection output and suspicious region detection images. Figure 6 depicts the
results of the proposed landslide regions localization. It displays the results of NDVI segmen-
tation (also known as change detection) and NDWI segmentation (we named it suspicious
regions detection). Then, both outputs were fused to display them as changes in detected areas.
Finally, the landslide region is located using morphological techniques such as identifying the
perimeter of an item in a binary image.

4 Simulation results

A well-known image processing program, MATLAB, was used to build the suggested model,
as previously indicated. The Windows 10 operating system, 8 GB of RAM, and an Intel I5
CPU were used in the implementation. Analysis of performance for Western India was carried
out utilizing the dataset previously discussed in this paper. Each RS image has 2713 landslide
zones in Maharashtra and Goa that were image graphed. The dataset had been divided into two
categories: training samples (70%) and testing samples (30%). The accuracy, f1-score, preci-
sion, recall, and specificity of the five-performance metrics were evaluated after 30% of the
samples were classified using different classifiers LSTM, ANN, and SVM. We achieved this
by analyzing the parameters of the confusion matrix. Formulas to calculate these parameters
are accessible in a significant number of research. We first investigate the performances of
SVM, ANN, and LSTM classifiers on the proposed model. Then study the comparative study
of the proposed model with state-of-the-art techniques.

4.1 Performance investigations

In this paper, we proposed a fully automated model using CNN and LSTM approaches. To
claim the efficiency of the proposed model, we conducted two-fold comparative investiga-
tions. First, we analyzed the comparative analysis among the LSTM, SVM, and ANN
classifiers. Secondly, we analyzed the raw CNN features (without the MNP layer) and

Fig. 6 Example of landslide regions localization for input RS image 1
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normalized CNN features (proposed CNN model shown in Fig. 4 and Table 2). We have fed
these two types of CNN features to three classifiers ANN, SVM, and LSTM. According to
each classifier outcome, we have measured the performances of landslide prediction using five
performance metrics. Figures 7, 8, 9, 10 and 11 show the performances for prediction
accuracy, prediction F1-score, precision, recall, and specificity rates using each classifier with
raw CNN and normalized CNN features. Here, the raw CNN features themselves represent the
existing CNN model also. Therefore, this study indirectly investigates the performance of the
proposed CNNmodel (Normalized CNN features) with the underlying CNN model (raw CNN
features).

Figures 7 and 8 illustrate prediction accuracy and F1-score results utilizing the ANN SVM
and LSTM with raw CNN and normalized CNN features, respectively. Regardless of the kind
of CNN features provided to LSTM, it outperformed the ANN and SVM classifiers. It is due to
the superiority of the deep learning classifier LSTM over the conventional ANN and SVM
classifiers. LSTMs are a form of RNN that can handle exploding and vanishing gradient
issues. It is usually supplemented with repeated gates known as forget gates. Unlike SVM and
prior neural networks like ANN, LSTM can perform deep learning tasks that demand a long-
term recall of events. Therefore, LSTM shows a significant performance improvement over the
SVM and ANN. Among SVM and ANN, noticed that the ANN classifier shows improved
accuracy performance over the SVM classifier. The cause for the higher ANN accuracy is that
effectively addressed the non-linear problems over the SVM classifier. The kernel function is
the key in SVM since it uses nonlinear mapping to make the data linearly separable. To cope
with nonlinear issues, however, ANN uses multi-layer connections and multiple activation
functions. It increases the ANN’s overall prediction performance compared to the SVM
classifier, independent of the type of features used for training and testing.

Similar to accuracy and F1-score performances, the precision rate in Fig. 9, the recall rate in
Fig. 10, and the specificity rate in Fig. 11 demonstrate that LSTM outperformed the ANN and
SVM classifiers for both raw and normalized CNN features. The maximum accuracy for the
ANN classifier was 90.67%, the SVM classifier was 88.42%, and the LSTM classifier was

Fig. 7 Prediction accuracy analysis using different classifiers
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97.03. Similarly, the maximum F1 score for the ANN classifier was 90.72%, the SVM
classifier was 88.51%, and the LSTM classifier was 95.73.

Apart from the investigation of the classifier’s performances, the outcomes in Figs. 7, 8, 9,
10 and 11 also demonstrate the analysis of the raw CNN and normalized CNN features. We
investigated the existing CNN model and proposed the CNN model to accesses the impact of
using them on the overall prediction performances. From the achieved outcomes, it is observed
that normalized CNN features produced improved prediction results compared to the raw CNN
features. There are various reasons for such performance improvement such as (1) high-
dimension raw CNN features contain several irrelevant and redundant features that increase
the classification errors, (2) the proposed CNN model performed the raw CNN features
reduction using mean and DCT functions, (3) the raw CNN features contains severe variations
in the value of their features that poorly affects the prediction outcomes, and (4) the scaled

Fig. 8 Prediction F1-score using different classifiers

Fig. 9 Precision analysis using different classifiers
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features using the min-max normalization brings all features in the particular range which
boosts the performances of the classifiers. Tables 3 and 4 presents the outcomes that demon-
strate the classifiers evaluation and CNN features evaluation to confirm the efficiency of the
proposed CNN-LSTM model for landslide prediction. Table 3 claims that the proposed CNN-
LSTM model has improved the overall performance approximately by 6% compared to SVM
and ANN models. Table 4 claims that the normalized CNN features with LSTM have
improved the overall performance approximately by 5% compared to raw CNN features.

4.2 State-of-the-art analysis

This section presents the comparative study of the proposed model with a recent deep learning-
based approach for landslide prediction. We have implemented existing deep learning-based

Fig. 10 Recall analysis using different classifiers

Fig. 11 Specificity analysis using different classifiers
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methods using a similar dataset under the same system configurations to investigate the three
core performance metrics such as prediction accuracy, prediction F1-score, average training
time, and average prediction time. We have compared the performance of the proposed model
with four state-of-the-art techniques as Bui et al. [5], Azarafza et al. [2], Qin et al. [27], and Thi
et al. [38]. The results in Table 5 show the proposed model reduced the overall training and
prediction time significantly compared to other similar methods. It shows that the proposed
model can minimize computational efforts by 35% compared to existing deep learning
techniques. On the other side, the prediction accuracy and F1-score performances also showed
improvement using the proposed model compared to all state-of-the-art methods.

The proposed model for landslide prediction and localization has improved the perfor-
mance of existing solutions due to steps such as pre-processing, ROI extraction, lightweight
feature extraction, and LSTM classification. The pre-processing approach removed the atmo-
spheric and geometric effects to overcome the misclassification problems. The landslide
regions extraction from the pre-processed RS image helps to estimate the unique and
region-specific features automatically. The lightweight CNN layers lead to a reduction in
overall processing time with optimal prediction accuracy. As the high-dimension raw CNN
features contain several irrelevant and redundant features that increase the classification errors,
we have performed the features selection and normalization to improve the accuracy. The
normalized features using the min-max normalization bring all features in the particular range
which boosts the performances of the classifiers.

5 Conclusion and future work

According to current research problems described in this paper, a novel framework for
automatic landslide prediction with landslide region localization had proposed. The real-time
RS-based landslide prediction and localization suffered from various challenges. The lack of
prominent real-time RS images dataset problem had addressed by collecting the RS images for
Maharashtra and Goa landslide regions in this research work. The problem with underlying

Table 3 Comparative analysis of classifiers using normalized CNN features

Measures SVM ANN LSTM

Accuracy (%) 88.42 90.67 97.03
F1-score (%) 88.51 90.72 95.73
Precision (%) 84.25 90.17 96.16
Recall (%) 89.67 91.17 96.28
Specificity (%) 84.25 90.17 96.6

Table 4 Comparative analysis of raw and normalized features using LSTM

Measures Raw CNN Normalized CNN

Accuracy (%) 92.39 97.03
F1-score (%) 93.43 95.73
Precision (%) 92.89 96.16
Recall (%) 93.98 96.28
Specificity (%) 93.01 96.6
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methods was the lack of an appropriate mechanism to remove the atmospheric modifications,
geometric corrections, or superfluous areas from the raw RS images. We pre-processed each
RS image to remove atmospheric and geometric corrections using band filtering and the NDVI
approach. The ROI was extracted from the NDVI image using a dynamic segmentation
approach. The high complexity deep learning models for landslide prediction was another
problem that we addressed by presenting a novel CNN framework for automatic feature
extraction. The proposed CNN model with features reduction and normalization leads to
lower computational requirements and higher prediction accuracy. Finally, the classifications
were performed using the LSTM, SVM, and ANN classifiers. The experimental results prove
the efficiency of the proposed model improves the overall accuracy by 2% while reducing the
computational time by 35% compared to state-of-the-art techniques. In this paper, we have
designed the post-processing step also to localize the predicted landslide regions. For future
work, we recommend the work on landslide region localization with more investigation in
terms of performance metrics and similar methods of analysis.
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