Future Generation Computer Systems 138 (2023) 313-327

Contents lists available at ScienceDirect = =
FiGICIS!
Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs Te—
Reinforcement learning based monotonic policy for online resource N

allocation
Pankaj Mishra *** Ahmed Moustafa

2 Department of Computer Science, Nagoya Institute of Technology, Japan

b School of Computing and Information Technology, University of Wollongong, Australia

¢ Faculty of Informatics, Zagazig University, Egypt

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 14 April 2021

Received in revised form 9 August 2021
Accepted 17 September 2021

Available online 13 September 2022

Keywords:

Resource allocation
Reinforcement learning
Online mechanism design
Monotonic policy

Critical payment

Resource dominant clustering

This research aims to design an optimal and strategyproof mechanism for online resource allocation
problems. In such problems, consumers randomly arrive with their resource requests in an arbitrary
manner. As a result, there is uncertainty in the future resource demands. In addition, the allocation
and payment decisions depend on the providers’ past experiences. To address these challenges, we
propose a novel reinforcement learning algorithm for optimising the resource allocation policy. The
proposed algorithm adopts a novel monotonic reward shaping function that uses a dominant-resource
multi-label classification technique. Finally, a critical payment value is calculated in order to maintain
the strategyproofness in the online environment. The experimental evaluations show that the proposed
mechanism achieves results that are within 96% of the optimal social welfare while outperforming the
other mechanisms that use fixed pricing.
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1. Introduction

Online mechanism designs are the extension of mechanism
design for resource allocation in online resource allocation ORA
paradigms. In such ORA paradigms, the consumer(s) submit their
resource request sequentially but in an arbitrary manner to
provider with resource constraints [ 1]. Therefore in such a setting,
the allocation rule for resource request of current consumer
purely depends on the knowledge of previously arrived con-
sumers. Besides, there is uncertainty about the future resource
demand in the ORA paradigm. Therefore, designing a mecha-
nism for ORA paradigm is fundamentally different from designing
a mechanism for offline paradigms. On the other hand, in an
offline (classical) setting, the mechanism waits until all the con-
sumers arrive. Then it makes allocation decision using classical
auction mechanisms [2] (i.e., second-price auction, first-price
auction, etc.). In this research, we focus on building a strate-
gyproof resource allocation mechanism for an ORA paradigm,
which maximises the social welfare of the provider. There are
many real-world applications wherein such online mechanisms
are being used, not limited to, selling air-plane tickets, cloud
resource allocation [3,4], real-time bidding in display advertise-
ment [5-7], sponsored search [8], dynamic fleet management [9],
fog computing [10], real-time ride-sharing [11]. However, in this
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research, we specifically focus on modelling an online mechanism
in cloud-based markets.

Designing an online mechanism for ORA is a complex prob-
lem that has various challenges which need to be addressed.
Firstly, since consumers are arriving sequentially, so details of
the future resource demands are not known. Therefore, a mech-
anism should trade-off the immediate profits of the providers
with future potential profits. In specific, an online mechanism
should not exhaust (allocate) all the resources to early arriving
(might be) less paying consumers, so that all the future po-
tential high paying consumers are rejected. Secondly, since the
consumer arrives arbitrarily, so the mechanism is not aware of
the available feasible decision set in the near future. Therefore,
an online mechanism should learn and adapt itself based on
previously arrived consumers. Finally, for any competitive market
with time-sensitive resource request, self-interested consumers
behave strategically and misrepresent their type (i.e., true re-
source valuation, the volume of resources, etc.,) to increase their
chances of winning. Therefore, the online mechanism should also
be strategy-proof [12], such that consumers are incentivised to
report their resource requirements truthfully.

In the last decade, many research related to online mecha-
nism [13] have been proposed to solve this classical secretary
problem [14]. In this context, different online variant of Vickrey-
Clarke-Groves (VCG) mechanisms were proposed by [15-17],
which focus on Bayesian-Nash incentive compatibility. However,
these approaches assumed that the distribution of arrival of
future resource demand is known in advance by the mechanism.
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Similarly, many posted-price based online mechanism [11,18],
wherein reserve prices are computed for each allocation. Since
these mechanisms are purely based on a static mathematical
model, so they do not adapt to the dynamics of the environment.
Further, an online mechanism based on exhibiting the monotonic
properties has been proposed [19,20]. However, in this research,
the authors assumed that the providers have unlimited resources
with partial knowledge of future consumers. Similarly, various
types of online mechanism have been proposed focusing on
different resource allocation characteristics in different domains.
For instance, [21,22] focused on building a bid-density based
pricing function in cloud computing. Then, [23] focused on scaling
problem in cloud computing. They proposed an algorithm to
take allocation decision based on load distribution. However, all
the above online mechanisms are based on underlying static
distribution and also did not consider the adaptation of the mech-
anism over time. Later, to tackle this problem of adaptability, [24]
proposed an online mechanism based on dynamic programming.
However, this mechanism has ignored the strategic behaviour of
the arriving consumers and assumed that consumers would not
misreport their type.

Recently, research combining machine learning and mecha-
nism design is being proposed. For instance, [25-27] proposed
machine learning-based strategyproof auction. However, these
mechanisms, do not consider the complex dynamics of the on-
line allocation, i.e., fail to consider the trade-off between the
current and future rewards. In such resource allocation envi-
ronment, reinforcement learning (RL) [28] has been successfully
applied [29-32]. However, these resource allocation algorithms
only focus on adapting the dynamics of the environment and fail
to address strategyproofness. Further, [33] proposed a RL based
strategyproof and adaptive online mechanism. However, since the
RL algorithm implemented linear function approximation, so it
was difficult for the mechanism to adapt to complex state de-
pendencies. Briefly, all the above-mentioned online mechanisms
are either based on static models or assume that the mecha-
nism is aware of the future arrival of consumers. Also, none of
the existing online mechanisms handled the strategyproof and
dynamics of the environment completely. Therefore, to address
the above-mentioned challenges and limitations, we propose an
online mechanism based on Proximal Policy Optimisation (PPO)
algorithm [34], which guarantees the monotonic [35] behaviour
of the allocation policy based on the novel reward-shaping al-
gorithm. In addition to that, we build a novel adaptive critical
payment based pricing technique using the PPO algorithm. In this
regard, the contributions of this research are as follows:

e First, a novel PPO-based allocation rule, which adapts to the
online environment and maintains the strategyproofness in
the environment.

e Second, we introduce a novel reward shaping technique
based on multi-class clustering on the previously arrived
consumers.

e Third, we introduce critical-payment based pricing rule for
online mechanism using the multi-class clustered data of
previously arrived consumers

The rest of this paper is organised as follows. The preliminaries
for modelling the resource allocation problem are introduced in
Section 2. Section 3 presents the proposed learning-based real-
time pricing algorithm. In Section 4, we discuss the properties
of the novel MP-ORA mechanism. Further, in Section 5, the ex-
perimental results are presented for evaluating the proposed
approach. Then, in Section 6, we discuss existing studies on
resource allocation mechanisms. Finally, the paper is concluded
in Section 7.
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2. Preliminaries

In this section, we present the ORA paradigm and its chal-
lenges associated with online mechanism design. In particular, we
discuss the modelling of the ORA paradigm and then we describe
how allocation and pricing rules are modelled in order to address
the challenges in designing an online mechanism.

2.1. System model

In ORA paradigm, there are two types of participants, namely,
the provider, who is the decision maker (accept or reject the
resource request) and the others are the consumers, which are
sequentially requesting resources. In this work, we consider a
dynamic market setting with a single provider who has a limited
volume of resources (e.g., storage capacity, bandwidth, computing
speed, etc.). On the other hand, set of consumers which arrive
sequentially but at random and submit their resource request in
each time step. Besides, consumers arrive in an episodic man-
ner and each episode is represented as finite and discrete time
horizon T of length tyax, S.t. T = {1, 2, ..., tma}. In this setting,
provider is denoted as P, whereas, set of all the consumers ar-
riving until time step t;q is denoted as C, s.t,, |C| = tme. The
provider P has m different types of resources (for example: CPU,
Bandwidth, Memory, etc.,) that are being requested by the con-
sumers sequentially at each time-step, we denote these resources
asR = {ry, 1y, ..., y}. Also, for each resource type r € R, provider
P has limited units of resources, s.t, a' € N, s.t, 100
denotes 100 units of resource type r; € R at time-step t. Then,
consumer i € C arrives at time step t € T and submits their type
¥; to provider P. The type ©; for consumer i € C represents the
resource request information denoted as ©¥; = (v, g;, d;), where
v; € RT is the consumer’s valuation of vector for requested
resources q; = [qir,, Giry» - - - » Qi ] € N'™ of duration size d; € N
time-steps. Throughout this paper, we assume that if resource
request from consumer j € C is allocated at time-step t € T,
then it is completed at t + d;. Since, single consumer arrives
at each time-step, therefore we represent consumer with their
corresponding time-step, i.e., for consumer arriving at t € T
is denoted as t and its corresponding type is denoted as ¥.
In this research we consider an online setting, wherein arriving
consumers are impatient, such that allocation decision of every
arriving consumer has to made immediately without any delay.
In this context, o Also, let ©%; denote the type space of consumer
iand ¥ = (04, Vs, ..., V4, ) denote the type profile space for
all the consumers. Also, recall that, in ORA setting, provider P at
time-step t € T is aware of current consumer with type ¥ and
all the consumers which have arrived before that denoted as ¥ _;;
whereas set of all the consumers arrived by t;. is denoted as T.

2.2. Online mechanism design

Online mechanism for every consumer t € T is denoted
as M alloc(9;, ¥-;), pay(v,), where alloc(d¢, 9-.;) € {0, 1}
represents the allocation rule and pay(¥;) € N denotes the
pricing rule. Specifically, alloc(¥;, ¥-;) = 0 when mechanism M
rejects the consumer i, and alloc(¥;, ¥.;) = 1 when consumer’s
resource request is allocated. Then, finally based on the pricing
rule pay(?9;), payment for the consumer is computed, such that,
if pay(¥;) > 0, then consumer i pays to the provider and if
pay(?¥;) < O then consumer receives same amount of payment
from the provider through the mechanism. It should be noted
mechanism M makes feasible allocations only, i.e., sum of all the
units of allocated resources would be less than or equal to total
available resources R. Also, for consumer t € T, it would be
allocated only if d; < ty — t. Further, we represent the online
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mechanism constraints as represented in [33] using Eqgs. (1) and
(2).
tmax
> alloc(®, 9 Ut +di > tmae)-Ger < a:VE, T, D,

t=1

t + alloc(V¢, Vo). dp < tmaxVt, ¥

(1)

(2)

where 1() denotes the indicator function keeping the check on
the time-step, such that if d; < t — t, then 1() = 1. Further,
based on the payment rule pay(?;), consumer’s payment value is
computed. Finally, at the end of time-step t;q, social-welfare of
the provider is computed as sum of expected valuation from all
the winning consumers as denoted in Eq. (3).

tmax

sw = Z alloc(V¢, V<¢).v¢

t=1

(3)

One of the objectives of designing an online mechanism is
to model an allocation rule such that, it maximises the social-
welfare. Specifically, our objective is to design an optimal allo-
cation policy (alloc*()) such that it maximises the expected sw of
the provider, as shown in Eq. (5).

tmax

alloc* = arg max ]E[Z alloc(S¢, B<¢).v¢]

alloc

(4)

t=1

2.3. Strategyproof for online mechanism

In this subsection, we would present the challenges associated
with handling the strategic behaviour of the participating con-
sumers. Generally, in competitive resource allocation problems
with limited resources, greedy consumers behave strategically to
purchase these resources at least reported valuation. For instance,
a consumer would report a lower valuation or higher volume
of requested resources to get the requested resources at the
minimum possible price. In this context, with such a strategic but
realistic setting, it is challenging to develop a mechanism with
accurate allocation and pricing rules. Therefore, an online mech-
anism should be capable of handling the strategic behaviours
of the consumers without affecting the individual utility of the
consumers. Before introducing the properties that are to be ex-
hibited while building an online mechanism, we introduce some
definitions.

Definition 2.1 (Reported Type). In this research, the true type of
a consumer, ¥%; = (v;, q;, 17) is its private information, i.e., it is not
known by the mechanism. The reported type, ¥/ = (v}, g, r{) is
the actual type revealed by the consumer to the mechanism on
arrival. Therefore, when ¢; = ¥/, then we say that the consumer

is truthful.

Definition 2.2 (Limited Misreport). In ORA paradigm, for consumer
i € C,let L(¥;) C ¥, denote the set of type from its type space
available for manipulation.

In an ORA setting, wherein consumers arrive sequentially, so
there is a set of limited misreport associated with each consumer.
In specific, consumer i € C can misreport its valuation v; and
quantity of resources q;. However, in an online setting, a con-
sumer is not aware of its type until its arrival and needs to be
serviced immediately, so it cannot misreport its arrival time. Also,
the consumer has no benefit in waiting after the completion of
their resource request. Therefore it is practical to assume that
the consumer has limited late-departure misreport, i.e., d; < d;.
Further, in this research, we assume that consumer is allowed
only one participation. In this setting, the individual utility of the
consumer is defined as follows:
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Definition 2.3 (Consumer Utility). The utility of an allocated
consumer ¢ in mechanism M is given by u.(9/, 9, 9,) = alloc
(B, L e — pay(d/, OL,).

In this research, we aim to incentivise the consumers to re-
port true type, so that the online mechanism could handle the
strategic behaviour of the consumers. Generally, for a resource
allocation mechanism M = (alloc(), pay()) to be able to handle
strategic behaviour, it must exhibit two key properties, i.e., strat-
egyproofness and individual rationality.

Definition 2.4 (Strategyproof). An online mechanism M is strate-
gyproof if consumer’s utility is maximised for reporting its true
type. Formally: ui(9;, 0, 92,) = u (9], 0, 9.,), VO, ¥, ¥_,. This
is also called as dominant strategy incentive compatible (DSIC).

Definition 2.5 (Individual Rationality). An online mechanism M is
individual rational if the utility of the consumer is non-negative
until and unless consumer is reporting its true value. Formally:
ue(%, v.,) > 0. This property also makes sure that any truth-
ful consumer is not made to pay more than their valuation,
ie. pay(d, <) < vy

Intuitively, Strategyproof property ensures that consumers
would be given incentives for reporting their true type, whereas
Individual Rationality ensures that no consumer is forced to pur-
chase resources or consumers would be having positive utility as
long as they report their true type. Further, similar to [33] setting,
we also consider a single-minded resource allocation setting,
i.e., each consumer will not accept the allocation offer from the
provider if offered resources are less than g;.

In the offline setting, Strategyproof property is usually achieved
by implementing VCG [15] mechanism, wherein consumers pay-
ment value depends on the other participating consumers as
follows,

pay(d) =Y v— Y v
jev_; jev j#i
However, the classical form of VCG mechanism cannot be
directly adopted in an online resource allocation setting. Since
online mechanisms are not aware of all the arriving consumers at
time-step t. In this regard, based on the Lemma 16.12 and Lemma
16.13 in [1], online mechanisms are said to be strategyproof
if the online mechanism has monotonic allocation policy (see
Definition 2.6) and critical payment policy (see Definition 2.7).

(5)

Definition 2.6 (Monotonic Allocation). An allocation rule alloc(.)
in online mechanism is monotonic, if any consumer allocated
remains allocated for any other reported type which is at least as
good as previous reported type. Specifically, if consumer i with
type v; = (v, qj, d;) is allocated, then consumer j with type
v = (v, gj, dj) will also be allocated, if ¥; > ¥;,1.e,, if v; > viAg; <
gi A d; < d;. Formally: alloc(d, ¥<;) = 1 — allocj(dj, 9j) =
1, Vﬂj > V.

Definition 2.7 (Critical Payment). A payment rule pay(.) in online
mechanism is critical if the consumer pays the minimum which
was enough for that particular consumer to remain allocated.
Formally critical payment rule is shown in Eq. (6).

min(v]) if alloc(¥],v) = 1.
00 if no such v; exists,

pay(di, ¥i) = { (6)

In this regard, the monotonic allocation policy ensures that
the consumers would always win as long as the consumer re-
ports equal or more than their winning reported type. On the
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other hand, since, the critical payment does not depend on the
consumer’s valuation, so the consumer has no incentive to manip-
ulate its type. In this regard, based on the above two techniques,
a strategyproof online mechanism is designed.

In the next section, we would introduce the implementa-
tion of the above techniques using reinforcement learning (RL)
algorithm, to design a self-learning online mechanism.

3. Monotonic policy based ORA

In this section, we would present a novel MP-ORA algorithm
for resource allocation problem in ORA setting. In particular, we
modified the Proximal Policy Optimisation algorithm (PPO) an
RL-algorithm using the dominant resource technique to observe
truthfulness in the proposed resource allocation mechanism. In
this context, a novel PPO based mechanism M = (alloc(), pay()) is
implemented at the provider’s end, and the provider is the acting
agent which optimises its allocation rule alloc() and pricing rule
pay() for sequentially arriving consumers. Therefore the proposed
Monotonic Policy-based ORA (MP-ORA) algorithm has two major
steps, first computing the resource dominant parameters using
the proposed Resource Dominant Clustering technique, then us-
ing this cluster data to build a PPO based learning mechanism as
discussed in the following subsections.

3.1. Resource dominant clustering

In this research, we adopt a novel clustering-based dominant
resource strategy [36] to categorise the consumers into two types
of cluster category. Generally, in an offline setting, the resource
allocation mechanism utilises the dominant resource parameters
to sort [37] the bidding consumers and allocated the bidders
based on their dominant resource parameter in descending order.
However, in ORA setting, the resource allocation mechanism has
to make allocation and pricing decision without any delay purely
based on past experiences, so at any instant of time, there is a
single consumer. In ORA setting, in every episode of length t;qx,
consumers arrive sequentially one in each time-step Vt € T. In
this context, auction begins as soon a consumer at time-step t
reports its type #%;. Since the resource allocation mechanism has
to make allocation and pricing decision without any delay purely
based on past experiences. In this context with knowledge of a
single consumer and uncertainty of the future consumers, design-
ing the allocation decision becomes challenging. To compute the
dominance of a single resource request, we utilise the previously
arrived consumers and a novel cluster technique. In specific, we
categorise consumer-type into two types of consumer clusters at
each time-step t € T, namely, K consumer clusters based on the
set of reported sizes, i.e. d_, and the other is Kg consumer clusters
on the quantity of reported resource requests, i.e., q_,. The idea
is to utilise this cluster information to categorise the dynamically
arriving consumers into one of the cluster, then utilise this infor-
mation to shape the rewarding function and the pricing function
in the proposed mechanism. In particular, after consumer t € T
with reported type ¥, (vr, q;, dy) is rejected or accepted by
the mechanism, then the training model is rewarded based on
the taken decisions. In this regard, the reported type of all the
previously arrived consumers ., stored in Transaction Database
is utilised to scale the impact of the decision at time-step t. In
order to do that, two classes of clusters of consumers arrived until
time-step t — 1, namely, reported size clusters denoted as K fj and
other reported requested quantity clusters denoted as Kf]. This
cluster information is stored in a Transaction Database and it is
updated after every allocations. Further based on these clustered
information, we compute two types of dominant parameters
for the consumer at time-step t € tyq. These two dominant
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parameters compute the dominance of reported type at time-step
t computed based on the similar reported type similarly arrived
consumers in past. Further, these dominant parameters are used
as a basis to compute the rewards and the further the allocation
price of the allocating consumers.

Firstly, in order to compute dominant size density parameter
(nf), we select a cluster from reported size clusters K using
cluster elicitation function K(5{"), s.t. max(v{/5) < (v;/5{), where
8¢ is the size density reported by the consumer t, j € K(8¢),
and K(Sf) € Kfj. Then, we compute the dominant size density
parameter nf’ for consumer t using Eq. (7).

d
a_ Zjelqa;’) Uj/‘sj

= TR @

where, |K(89)| denotes the size of the cluster; whereas, size
density (Sf for a consumer ¢ € T is computed using Eq. (8).
Intuitively, Eq. (8) computes the part of the total available time-
span at time-step ¢ occupied by the allocated consumer. Also, let

vdl"((sd) denote the nth highest valuation size density in the cluster
t
d .
K(8{), s.t., vdll((af) = max(v;/8{), Vj € K(5{).
d/
5? — ¢ (8)
tnax — C

Similarly, in order to compute dominant request density pa-
rameter (n7) from the reported requested quantity clusters Ké,
again we select a cluster K(8/), s.t. max(v/8]) < (v;/8]), where
8] is the normalised request density for consumer t, j € K(87),
and I((sz) € K;. Then, we compute the dominant request density
n{ using Eq. (9) as follows.

q
q Zjem?) Uj/5j

T KD ®

Ny =
where, K(8]) represents the clustering function, whereas nor-
malised request density 8¢ for consumer c arrived at time-step
¢ € T is computed using Eq. (10).
> g normalise(dr c )
IR|

where, R is the set of all the resources and dr ;) is the resource
request density computed using Eq. (11), whereas, normalise(.)

is the normalising function for different types of resource using
Eq. (12).

50 =

(10)

de,r
3 (v

r

dT(Cy,») =

XM —x if xmax _
XMax _ymin »

1, if xm* —

xmin # 0.

XM — 0, (12)

normalise(x) = {

Also, let qu(aq
t

sity in the cluster K(87), s.t., vq}((aq) = max(v;/8]), Vi € K(8]).
Intuitively, dominant size density p[arameter nf denotes the dom-
inance of the valuation per size density of consumer t among
the similar cluster of consumers arrived in the past. Similarly,
request density parameter 7; denotes the dominance of valuation
per requested resource density of consumer ¢t amongst the other
consumers belonging to similar cluster of consumers arrived in
the past. Finally, these cluster information are updated in the
Transaction Database at the end of every allocation, which is also
used for representing the state of the environment and shaping
an monotonic reward function as discussed further.

) denote the nth highest valuation request den-
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Table 1
Consumer reported type sample at time-step 10.
#1D v g d, dre,=q/da 84 8w 8¢ w8l
Cq 1.9 (3,20,60) 3 (0.06,0.1,0.1) 0.015 0.3 126 6.3
[ 6.9 (12,32,25) 8 (0.25,0.17,0.04) 0.044 032 156 21.56
3 3.0 (6,2430) 15 (0.14,0.15,0.05) 0.078 0.73 39 53
C4 4.1 (10,32,25) 2 (0.032,0.25,0.05) 0.0113 0.8 362 5.1
Cs 23 (2,1332) 3 (0.07,0.011,0.07) 0.016 077 143 298
Cs 41 (6,26,51) 4 (0.12,0.34,0.12) 0.0103 0.17 398 24
c7 25 (1,1421) 14 (0.04,0.19,0.055) 0.072 034 34 7.3
[ 35 (3,6,62) 4 (0.17,0.09,0.19) 0.021 035 166 20
Co 1.2 (3,8,20) 3 (0.2,0.14,0.06) 0.015 039 80 4.8
C10 3.0 (2,12,28) 18 (0.17,0.24,0.1) 0.096 0.83 31 3.6
The Elbow Method
1750
1500
1250
1000
(&}
= 750
500 Sy
250 \\
0 \- —
1 2 3 4 5 6 7 8 9
Number of Size Clusters
Fig. 1. Value of K in size density class.
The Elbow Method
2000
1500
1]
$ 1000
=
500
0 \1‘
1 2 3 4 5 6 7 8 9
Number of Reauest Clusters
Fig. 2. Value of K in request density class.
Table 2
Dominant cluster values.
# Cluster K} K
#cluster, (c4, €6, Cg) (c3, €4, Cs, C10, C10)
#cluster, (c2) (c2)
#clusters (c1, 65, €7, Co) (c1, G5, €7, Co)
#clustery (c3, C3) -

3.1.1. Dominant clustering example

In this subsection, we briefly demonstrate the novel resource
dominant clustering method. In this example, we demonstrate
the clustering technique for a consumer cq; at time-step t = 11.
Also, let |R| = 3 and a! = (50, 200, 600) and tpme = 200. In this
context, Table 1 enlists all the reported type of ten consumers
c1, ..., Cyp arrived before cq1, along with their corresponding dr; ,,
84, 87, v{/8% and v} /57.

Further, at t = 11, ¢y report their type #;; = (8.2,(3, 9, 51),
9) and let a'! = (20, 120, 350). In this setting, firstly, consumers
€1, ..., Cyo are clustered into two different classes, K;' and K
based on 8%, and 8%, respectively. In this context, number of
clusters, i.e., value of K in each class is determined based on the
within cluster sum of squares (WCSS) [38] technique using elbow
method. For instance, from Figs. 1 and 2 it can be seen that, K = 4
and K = 3 for K;' and K,', respectively.

Moving further, consumers are clustered into two classes as
shown in Figs. 3 and 4, using the identified values of K. The details
of these two classes of clusters are listed in Table 2.
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Clusters of Consumers
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0.08 PY @ Cluster2
" [ Cluster 3
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£ 0.06 ®
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Fig. 3. Size density clusters K}'.
Clusters of Consumers
0.8 o @ Clusterl
@ Cluster2
.07
2 Cluster 3
2 0.6
S
= 0.5
o ®
204
g [
0.3
0.2 Y
20 30 40 50 60 70
Valuation

Fig. 4. Request density clusters K'.

Then using Eq. (8), we compute 8¢, as 8, = 9/(200 — 11) =
0.047. Similarly, using Eq. (10) we compute 5‘171. In this regard,
to compute 8({1 we normalise reported resource request using
Eq. (12). In doing so, from Table 1, min and max values for all
resource request densities are noted, such as, (dr{"i”; dr®)
(0.06, 0.17); (dri"™; dri"*) = (0.011, 0.34) and (dri""; dri"™)
(0.04, 0.19). Further, we compute resource request densities for
c11, as dri11 = 3/20 = 0.15; dri12 = 9/120 = 0.075; and
dry13 = 51/350 = 0.14. Then, based on these values, using
Eq. (12), normalise(dry,1) = drf"™ — dryq/drf®™ — dr{"i“
(0.17 — 0.15)/(0.17 — 0.06) = 0.18; normalise(drq; ) = (0.34 —
0.075)/(0.34 — 0.011) = 0.8; and normalise(dr;13) = (0.19 —
0.14)/(0.19 — 0.04) = 0.33. Then, using these computed values,
81, = (0.18 + 0.8 + 0.33)/3 = 0.43; v/ /8¢ = 8.2/0.047 = 174;
and v; /8] =8.2/0.43 = 19.

Now, we elect a single cluster from K}', in which maximum
bid to size ratio is at max v},/8{,. Therefore, from Tables 1 and
2, with random tie-breaking we elicit cluster clustery C K;],
ie., K(Sf]) = clustery {c3, cg}. Similarly, we elect a single
cluster from K ;1, in which maximum bid to request ratio is at
max v/ll/é'{’l. Therefore, from Tables 1 and 2, with random tie-
breaking we elicit a cluster clusters C K;l is chosen, i.e., K(571)
clusters = {cy, cs, ¢7, Cg}.

Finally, using Eqgs. (7) and (9), we compute nﬁ’] = (39 +
166/2) = 102.5 and nfl =(6.34+2.98+7.3+4.8/4) = 5.34. Note
that, in this example, vq}((sg) = vg = 3.5, whereas uq}(((s?) = é7 =
2.5. In this regard, resource dominant parameters are computed.

3.2. PPO learning algorithm

In this subsection, we would model the ORA problem into the
Markov decision process (MDP), and then present the modified
PPO algorithm. Firstly, we model the provider P as an agent
interacting in an ORA market environment. In this regard, the
state-space of the environment for every episode of length T =
{1,2,..., tma} is denoted as S = {s1,S2, ... Sty - Also, recall
that, single consumer arrives at each time-step t € T, there s; de-
notes state change on arrival of consumer of reported type ¥/
(vr, q;, dy). Also, in ORA setting at any time-step t € T, provider is
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also aware about the set of previously arrived consumers, i.e., 6”,.
On the other hand, in an offline setting, the provider is aware
of all the consumers, so the state is represented using a type
of all the current bidding consumers. In either case, the state
must be represented using all the available information about the
consumers. So in our setting ideally should be represented using
all the past consumers along with current consumer i.e., s; ~
{¢_,, ¥/}. However, as the number of consumer increases, such
representation would be computationally expensive. Therefore,
we represent the past consumer in the state using the clus-
ter information and consider only the past consumers from the
Transaction Database which is in the same cluster as the ¥,.

In particular, state is represented using %;, requested request
density 5? on the available resources, size density 8? on the total
time-step to tpq and the occupancy o of the each resource
type, where r € Rand j € {1,2,...,a;}. Here occupancy o,
represents the time-step at which single unit of resource type
r will be available. For instance, if o, [0,1,1,2,5], then
single unit of resource will be available at time-step 0, then at
time-step 1, 2 more units of resource r; will be available and
directly at time-step 5, one more unit will be available. Besides,
we include the corresponding consumer clusters l(((Sf ) and K(67)
(see Section 3.1). In this regard, the final state is denoted using
Eq. (13).

d
Se = [y, Pty -+ 55, 5t, {o11,..

{OrmaxJ}V D] {Ormax,armux},
K(57), K(87)]

In this context, s, is the terminal state, therefore, after t;qx,
i.e., at tyq + 1, the state will be reset and reward will be zero.
Further, at each time-step t € T provider P has continuous action
A; € [0, 1], wherein 0 usually means reject and 1 usually means
accept. Further, at each time-step t € T on arrival of consumer 6/,
provider P mainly have two actions, either to accept i.e., act; = 1
or to reject, i.e., act; = 0. However, in this research, apart from
the above two extreme actions, we also consider intermediate
actions, we consider a continuous action-space A; € [0, 1] at each
time step. This intermediate actions would aid the mechanism to
understand the extent at which MDP model is willing to accept
of reject the consumer request. Then after performing action act;,
state of the environment is transferred to next state s, based on
the transition function 7, s.t. T : s; x Ay — S41. Finally, agent P
receives reward reward; based on the state s;,; and action act;.
Usually, in such auction based resource allocation setting, reward
is function of the bidding values [4], s.t. reward reward; for taking
action act, in-state s; is denoted as N(s;, act;) v;. However,
in order to observe truthfulness in the proposed mechanism,
we implemented a novel monotonic reward function based on
resource dominant parameters as depicted in Algorithm 1.

T PR
(13)

This algorithm takes three input, i.e., action act; and two
resource dominant parameters nf and n{. Using this algorithm we
compute two types of reward, namely, reward based on reported
size d; and reward based on reported resource request denoted
as rewardf and reward; respectively. Then finally, the algorithm
gives an average of both the reward as an output. In this setting,
the judgement of the reward values are based on the respective
resource dominant parameters. Then, these rewards are classified
as negative reward, positive but good reward and positive but better
reward, wherein positive but better reward being the optimal solu-
tion. The intuition behind the classification is that if a particular
reported d; or q; is greater than the respective resource dominant
parameter and it is accepted, then it is an optimal allocation and
positive reward is computed, or else is it is not a good allocation
and negative reward is computed.
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Algorithm 1: Monotonic Reward Function

Input: act;, n%, nf

Result: reward;
1 [*initialisation*/;
2 reward?, reward;
3 if cannotSchedule(?;) then
a | reward! = vdll((sf) ;
rejection is good decision

5 | reward] = vqll((sq) ; // positive reward:
t
rejection is good decision

// positive reward:

6 else

7 [* reward based on reported size */ ;

s | if n!*d, <v] then

9 rewardd = —1 % vdll((sd) ;i // negative reward:
t

rejection is not good decision
else
reward?! = vd

10

1 1

K(s¢
rejection is better decision

) d, ; // positive reward:

12 end

13 /* reward based on reported resource request */ ;

14 | if ! x g < v then

15 reward! = —1 % vq’ // negative reward:

K({)
rejection is not good decision

else
reward! = vq

16

17 1

K(s]
rejection is better decision

) q;® ; // positive reward:

18 end

19 end

20 reward; = (reward? + rewardy)/2 ;
21 return reward; ;

Further, after modelling the ORA problem as MDP problem,
then we implement RL-algorithm to train the agent to optimise
the policies to choose an optimal action in each time-step. There
exist different RL-algorithms, but we choose PPO algorithm for
our problem mainly because of two reasons, namely, (1) Clipping
technique: clipping the objective function not only reduces the
complexity of the algorithm compared to trust region policy op-
timisation (TPRO) but also helps in achieving a monotonic policy
update; and (2) PPO algorithm supports continuous action-space,
which is appropriate for our setting. Besides, PPO algorithm is
scalable and performance is better [39] as compared to other
on-policy algorithms (A2C and ACKTR). Apart from that, the clip-
ping feature of the algorithm helps in achieving a monotonic
policy update. Therefore, we implemented PPO algorithm [34]
which employs the resource dominant parameters to optimise
the stochastic policy 7y, to choose an optimal action act; € A,
vVt € T, st. my : Ar — [0, 1], where 6 represents the RL-
parameters. Also, in this research we use the PPO-Clip variant of
the PPO algorithm, wherein policy parameter is updated using
Eq. (14).

i1 = argmax Eg, act, g, [L(St, acty, bk, 0)] (14)
0

wherein, L denotes the surrogate advantage function [40], which

measures relative performance of new policy wy with respect to

current policy 7y, computed using Eq. (15).

me(act|s)

L(s, act, 6;, 0) 2o, (act]s)
t

= min( Adv™ (s, act),
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gler_q, Adv™: (s, act))) (15)

where, Adv™ denotes the advantage function for the current
policy my, computed using advantage estimation [41], and value
of g(.) is computed as follows:

(1+ €)Adv, if Adv > 0.

,Adv) = . 16
g(e. Adv) {(l —€)Adv, if Adv < 0. (16)
where, € is the clipping function computed using Eq. (17)

o — {min(s, acty), if canSchedule(¥}). (17)

where, ¢ is the clipping variable, a hyperparameter which re-
sembles how far new policy is allowed to drift away from the
old policy, whereas canSchedule() return true when resources are
available with the provider. Algorithm 2 depicts the modified PPO,
which takes policy parameters as input and returns an optimise
action value act; along with resource dominant parameters for
each time-step.
Algorithm 2: Modified PPO-Clip
Input: 6y: initial policy parameter ; ¢y: initial value

function parameters
Input: set clip-ratio ¢ € [0.1,0.3] & acty € [0.1, 0.3]
t=1;
while t # t;;ox do
Run policy 74, for T' timesteps ;
Compute advantage estimate Advy, ..., Advyg ;
Observe state s; from the environment ;
Obtain act;_; from previous time-step ;
Obtain €;_; using Equation (17) ;

N O b W N

Obtain act; Py m(acte|s;, ¥{); using Equation (14) ;
9 Obtain reward; using Algorithm 1 ;

10 | Compute the n¢ and »{ using Equation (7) and (9) ;

1 Asynchronous Update PPO model using gradient
decent method ;

return act; ;

t++;

end

-]

12
13
14

Further, after computing the action value act; for the consumer
¥/, cost of the requested resources is computed using Eq. (18).

v2 o d4v? o g
dyti oy 1t .
cost(9]) = | — (1 —act), ifK(5{), K(5]) # 0.
vi(1 — act;)

(18)

From Eq. (18), the cost function computes the cost based on
the reported valuation of the consumers in the selected cluster.
Further, if the no similar consumers have arrived in the past
(i.e. cluster K(8%) or K(87) is empty), then cost is computed
based on its reported valuation. On the other hand, the allocation
decision based on Eq. (19), s.t., 1 means request is allocated or
else it is rejected.

|

Finally, using the computed cost and the allocation value,
critical payment is computed for each consumer using Eq. (20)

1 if cost(d) < v] .

alloc(¥;, V<) 0

(19)

pay(d) = cost(¥) x alloc(d{, ¥ ;) (20)

In this regard, allocation and payment decisions for the arriv-
ing consumer are based on dominant resource strategy and the
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modified PPO algorithm. Also, it can seen from Eq. (18), since
the payment is computed from other similar consumers but not
the reported valuation, this satisfies the critical payment theory.
However, it is a special case when K(8¢) = @ or K(8}) = @, this
can be seen as a market with single consumers, so the payment
policy is computed based on reserve price mechanism [12].

3.3. Execution of MP-ORA

In this subsection we would present the working the novel
MP-ORA mechanism. Continuing from the example discussed in
Section 3.1.1, at time-stem t = 11, decision to allocate con-
sumer cq; is to be made. In this context, let us assume acty; =
0.1 computed using Algorithm 2. Also from discussion in Sec-
tion 3.1.1, K(8%,) = (c3, cg), so v? = v} 3.0. Similarly,

ket
K(8],) = (c1,¢s,¢7, o), SO vf((aq ) ! 3.5. In this regard,

= VU5 =
from Eq. (18), cost(d1;) = 3 + 3115/2(1 —0.1) = 4.77. Now since
4.77 < 8.2, therefore cy; would be allocated (from Eq. (19)), s.t.
alloc(¥11, ¥<11) = 1. Finally, payment is computed as pay(d1,) =
477 x1=4.77.

In this transaction, provider P earns 4.77, whereas the utility of
the consumer c;; is computed as 8.2 —4.77 = 3.43 (From Defini-
tion 2.3). Further, through this example, we would also show that
how allocation decision in Eq. (19) ensures strategyproofness.
To begin with, if the consumer reports greater than 8.2, then
there could be two, there will be no change in the allocation and
payment will still be 4.77. So, consumers do not have an incentive
in reporting higher value. Further, if the consumer reports the
valuation less than the computed critical value, i.e., 4.77, then
based on Eq. (19), the consumer will not be allocated, so its
utility will be zero. So we showed that consumers do not have
any incentive in misreporting their valuations. Therefore, the
novel MP-ORA mechanism ensures strategyproofness by comput-
ing critical payment value for all the arriving consumers. The
detailed proof of this strategyproof property is discussed further.

4. Properties of MP-ORA

In this section, we investigate the properties of MP-ORA. We
first show that the MP-ORA mechanism is individually rational
(i.e., truthful users will never incur a loss).

Theorem 1. The MP-ORA mechanism is individually rational.

Proof. Let us consider a consumer c; with reported type ¥, =
(v{,d;, q;), and alloc(¥/, ¥’ ,) = 1 ie. consumer t is allocated.
Then in this proof we prove that, if reported type is true then its
utility is non-negative. This can be easily be seen from Eq. (18),
cost of the requested resources depends on the resource domi-
nant parameters, nf and n{, which are computed using Egs. (7)
and (9). Since these parameters represent the valuation density
in their corresponding clusters K(dr?) group, such that maximum
value is not more than the reported valuation v;. In this regard,
always the computed payment is pay(d{) < wv;. As a result,
the utility of the consumer t, u; = v; — pay(9/) > 0 is non-
negative and thus consumer will never face loss. On the other
hand, payment for truthful consumer which do not win is 0
from Eq. (20), since alloc(¥/, ¥-;) = 0. Therefore, in the MP-
ORA mechanism utility of all the consumer is non-negative, thus
MP = ORA mechanism is individually rational. O

We now prove that MP-ORA mechanism is incentive compat-
ible. In order to prove that, we need to show that the allocation
algorithm is monotone, and the payment rule is based on the
critical payment.
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Theorem 2. The MP-ORA mechanism is incentive compatible.

Proof. We would first show that the allocation rule in the MP-
ORA mechanism is monotone. That is, if consumer t € T is
allocated by reporting ¢/, then it will also be allocated if con-
sumer reports more preferred request i.e., ¢, C ¥,. In this regard,
if v/ > vf, then clearly from Eq. (19), ¢/ will also be allocated.
Because, cluster K(Sf) and K(87) remains the same from Egs. (7)
and (9), respectively. Further, if the consumer is allocated on
reporting d;, then it will also be allocated with d] < dj, as
canAllocate() function will return true. Similarly, if consumer is
allocated reporting q;, then it will also be allocated with q; < ;.

Further, we prove that the payment rule in MP-ORA mecha-
nism is based on the critical payment. In order to show that, we
will prove that pay(¥;) computed in Eq. (20) is the least value
that consumer t € T is expected to report to get the allocation.
Since from Eq. (19), if v; < cost(®;), then alloc(®%;) = 0. Therefore,
cost(®;) is the critical value for the consumer ¢ which satisfies
Definition critical payment property. O

We now show that novel MP-ORA mechanism has polynomial
time complexity.

Theorem 3. The time complexity of MP-ORA mechanism is polyno-
mial.

Proof. Firstly, Algorithm 1 i.e. Monotonic Reward Function com-
prises of three primary computations requiring steps, clustering
of past consumers, sorting of cluster and checking the feasibility
of scheduling. Firstly, clustering of past consumers at time-step
t has the 0(C?) time complexity. Then the time complexity of
sorting the chosen clusters K(8¢9) and K(8{) is O(Clog(C)). Finally,
the time complexity of checking the feasibility of the allocation
for every arrival of consumer would be O(CR). As a whole overall
complexity of Algorithm 1 is O(C? + Clog(C)+ CR), i.e. polynomial
time.

Further, Algorithm 2, i.e. Modified PPO-Clip is the PPO based
learning algorithm which has a learning network to generate
action values for every allocation request. Therefore, its time
complexity depends on the implemented fully connected neural
network [42]. In this regard, the time complexity of the fully
connected neural network depends on the number of neural
nodes performing multiplication operations [43]. In this con-
text, the time complexity is polynomial-time represented as
O(ZfF:] ngng_q), where n is the number of neural nodes and f rep-
resents the fully connected layers. Since the time complexity of
both the algorithms is in polynomial time, so the time complexity
of the novel MP-ORA mechanism is polynomial (see Table 3). O

5. Experimental evaluation

In this section we present the experimental setting and results
to investigate the properties of our proposed MP-ORA mecha-
nism for online resource allocation domain based on range of
experimental settings. The extensive experimental settings were
performed on real like workload for three types cloud resources,
i.e.,, C.P.U, memory and storage. Throughout the experiment, we
use following hyper-parameters for MP-ORA: ¢ = 0.1 (clip ratio)
; y = 0.9 (discount factor) ; learning-rate = 3e~*; epochs = 20,
batch — size = 64, as these hyper-parameters gave good results.
Towards the end, we compare the proposed MPORA mechanism
with following benchmarks.

e Offline Greedy: An offline setting wherein future consumer
type is already known, i.e., unrealistic solution for ORA
paradigm. This is similar to the classical winner determina-
tion problem, and the mechanism elects the consumers in
decreasing order of their valuations.
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Table 3
List of symbols.
# Symbol # Definitions
p The provider
T Time horizon up to max-time step tpqe
C Set of consumers arrived withing time-horizon
T
R={r,r2, ..., T} m types of resources available with the
provider
ar, Units of resources of type r; € R
g Reported type of the consumer i € C
v; &d; Reported valuation and size of the consumer
of consumer i
Gi = {qirys > Qi } Gir; units of resources requested by consumer

i, where r; € R

alloc(V¢, ¥-t) Allocation policy of the mechanism M

pay(v) Pricing policy of the mechanism M

o Set of all the consumers arrived until
time-step t

K Clusters of consumers based on reported size
d arrived before time step t

K fl Clusters of consumers based on reported
resource request g arrived before time step t

8;1 &8;’ Size density & resource density, respectively
of the consumer i € C

n &nf Dominant size density & dominant request
density, respectively of the consumer i

K(89) &K (51) Cluster elicitation function

qu(aq) nth highest valuation request density in the

t

cluster K(8{)

e Optimal Pricing: A posted-pricing based algorithm, wherein
allocation decisions are based on the fixed reserve price.
Specifically, the consumer’s request is allocated only if v >
¥, where  are optimally selected reserve price from a
pre-defined specific range of prices, as discussed in [44].

e First-Come-First-Serve (FCFS). This is the simple schedule
with no mechanism, and this algorithm would allocate the
consumer’s request as long as there are still sufficient re-
sources available.

e Strategyproof-Reinforcement Learning (SP-RL): This is a linear
approximation based strategyproof reinforcement learning
mechanism [33]. In this algorithm, the strategyproof prop-
erty is used based on the concepts of monotonic allocation
rule and critical payment rule.

From the above-mentioned benchmarks algorithms, Offline
Greedy, Optimal Pricing, and FCFS are evaluated based on average
of 2000 iteration. On the other hand, SP-RL and MP-ORA algo-
rithms are evaluated based on training the algorithm from scratch
after every 100 episodes for 10,000 training episodes, to ensure
noise reduction. Finally, all the algorithms are implemented in
Python 3 and the experiments are performed on Intel Xeon 3.6 GHz
6 core processor with 32 GB RAM.

5.1. Experimental setup

We use the Google cluster trace [45] to run the simulation.
In particular we extract consumers resource request for three
types of resources, namely, CPU, Memory and Disk Storage from
the Task Events Tables in Google cluster traces, i.e., m 3 s,
R = {CPU, Memory, Storage}. In the provided dataset, the volume
of each requested resources i.e., g; = {q(i,cpu), (i, Memory)» (i, Storage)}
are the re-scaled values and not the actual values. Further, based
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on these re-scaled values we divide the consumers into two cat-
egories, namely, moderate consumers (¥%,) and heavy consumers
(19;3) using a median split technique [46]. Then, we scale these
re-scaled values by considering the maximum re-scaled value as
one unit for each resource type and then scaled all the requested
units by it.

Also, since, size for each resource request is not publicly avail-
able in the dataset (i.e., Task Events Tables). Therefore, similar
to [33], we simulate the size for both d;, and dj sampling uni-
formly at random from [1, 30]. Similarly, we simulate the valu-
ation v,, and v/, by sampling per unit price (PUP) for all three
resources CPU, Memory and Storage uniformly at random from
PUP?Y ¢ [10, 20], PUPMe™Y ¢ [5,10] and PUPS®™ ¢ [1, 10],
respectively. The intuition behind choosing such distribution is
that, cost of CPU is expensive as compared to other two, and
storage is the least expensive. Further, using these per unit prices,
valuation is computed for every consumer is computed v;
di 3" PUP, # g, Vi € [1, ma).

In this setting, we train the PPO algorithm for 10,000 training
episodes, which has fixed length t,q preset at the beginning
of the experiment. We also preset the total available resources
a, = (CPU = 10, Memory = 50, Storage = 100). Finally, all the
algorithms are implemented in Python 3 [47] and are performed
on Intel Xeon 3.6 GHz 6 core processor with 32 GB RAM.

In this setting, we then compare the performance of MP-
ORA for different workloads. For each workload, we examine
the execution time, the social welfare, the number of consumers
allocated and the resource utilisation for each mechanism. In
this context, resource utilisation for every resource type is the
percentage of allocated resource out of the total capacity of
that resource over the entire time. We now present the re-
sults obtained by MP-ORA and other benchmarks for the selected
parameters.

5.2. Impact of type of consumer on the mechanism

This experimental setting evaluates the impact of the arrival
of different consumer type (i.e., heavy consumer and moder-
ate consumer) on four different evaluation parameters, namely,
provider’s social welfare, execution time (allocation delay), num-
ber of consumers allocated, and resource utilisation. In this re-
gard, we design six test cases having different probabilities (e)
at which heavy consumer arrives as follows: 0.05, 0.1, 0.15, 0.2,
0.25 and 0.3. Besides, we fix the total number of the consumer to
tmax = 200 and the resource capacity multiplier as 40, i.e., a, =
(ceru 400, Memory = 2000, Storage = 4000). Firstly, from
Fig. 5, it is observed that the social welfare of the provider in
all the algorithms increases with the increase in the probability
of heavy consumers. In particular, social welfare is maximum at
e = 0.3 and least at e = 0.05. Besides, social welfare in the
SP-RL algorithm is least as compared to optimal pricing and MP-
ORA. Overall, in all the test cases, social welfare in MP-ORA is
comparatively higher.

Fig. 6 depicts the execution time, i.e., the delay in allocation
of the winning consumers. Note that execution time for non-
learning based algorithms (FCFS, Optimal Price and Offline Greedy)
is negligible. Therefore, we would focus only on learning-based
algorithms (SP-RL and MP-ORA). From Fig. 6 it is observed that
execution time in MP-ORA is comparatively much lower. Besides,
execution time for SP-RL algorithm slowly rises with increase in
value of e. On the other hand, execution time is either levelled
off or drops slightly with an increase in e. This observation is
interesting as it shows that, unlike SP-RL, the novel MP-ORA is
adaptable to change in consumer type. In particular, at e = 0.25,
execution time for SP-RL algorithm rises, whereas it drops for
MP-ORA algorithm.
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Fig. 7 shows that average number of consumers allocated
for different algorithms. Generally, a higher number of allocated
consumers not necessarily denotes the efficiency of the algorithm.
However, higher social welfare and the higher number of allo-
cated consumers showcase the reliability of the system. Overall,
the number of allocated consumers is steady with an increase in
e and novel MP-ORA has the maximum number of consumers in
all the test cases.

Further, Figs. 8-10 depict the resource utilisation of all the
three types of resources in different test cases. It can be seen
in the figure that, with a higher probability of heavy consumers,
resource utilisation is also high. For instance, when e = 0.25,
the resource utilisation is more as compared to when e = 0.05,
e = 0.1 and e = 0.15. Thus the presence of heavy consumers
has an impact on resource utilisation. Overall, resource utilisation
is least for the MP-ORA algorithm in all the test cases, which
showcases the availability of the resources in all the cases.

5.3. Impact of number of consumers

This experimental setting evaluates the impact of the increase
in the number of consumers, i.e., increase in total time-step,
wherein the probability of higher consumer, i.e.,, e = 0.3 and
capacity multiplier ¢ 40, i.e., a, = (CPU = 400, Memory =
2000, Storage = 4000). In this setting, we design four test cases
having different time-step tq = 200, tpex = 400, tne = 600
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and tge = 800. Similar to previous setting, we evaluate the

mechanism based four different evaluation parameters, namely,
provider’s social welfare, execution time (allocation delay), num-
ber of consumers allocated, and resource utilisation.

Fig. 11 depicts that the provider’s social welfare is directly
proportional to the number of consumers served. Note that for
FCFS and Offline Greedy algorithm, total social welfare is negligible
compared to the other three algorithms. On the other hand, social
welfare earned in SP-RL and Optimal Price are the same in all the
test cases. On the other hand, social welfare earned in the MP-ORA
algorithm doubles with the increase in the number of consumers.
In particular, with the number of consumers 800, social welfare
is almost double compared to social welfare earned with 600.
Overall, social welfare earned in that MP-ORA is more compared
to SP-RL algorithm in all test cases.

Fig. 12, execution time gradually increases in learning-based
algorithms as the number of consumers increases. However, exe-
cution time is steady for non-learning based algorithms. Besides,
execution time in MP-ORA increases in the beginning at reaches
its threshold at 600 and then the execution time becomes steady.

Further, in Fig. 13, the average number of consumers allocated
for different algorithms is shown. Overall, the number of allocated
consumers steadily increases with an increase in the number of
consumers. Apart from that, the novel MP-ORA has the maximum
number of consumers allocated in all test cases.
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Further, Figs. 14-16 depict the resource utilisation of all the
three types of resources in different test cases. Naturally, in an
offline setting, with the increase in the number of consumers,
resource utilisation must rise. However, in an online setting, all
the resources are not exhausted at the same time. Therefore, the
average utilisation of the resources remains lower as compared
to the offline setting. Overall, in all test cases, resource utilisation
in Optimal Pricing is the highest, whereas it is lowest in MP-ORA
algorithm.

5.4. Impact of available resource capacity with the provider

In this experimental setting, we aim to evaluate the impact
of the increase in the availability of resources with the provider,
i.e., capacity multiplier (c). In this setting, probability of higher
consumer, i.e., e 0.3 and tp = 400. We design four test
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cases having different capacity multiplier, i.e., c = 40, ¢ = 80,
¢ = 160 and ¢ = 320. Again, we evaluate the mechanism based
four different evaluation parameters, namely, provider’s social
welfare, execution time (allocation delay), number of consumers
allocated, and resource utilisation.

From Fig. 17, it is observed, that social welfare in MP-ORA
mechanism is more as compared to other algorithms. Also, in
the beginning, social welfare in the MP-ORA mechanism increases
with an increase in total available resources but then decreases
gradually. For instance, when ¢ = 40, social welfare is maximum
but then it drops when ¢ = 80. One of the possible justification
could be the greater interval between the two allocations as
compared to their size of the requested resources. Thus, there
could be many time-steps, wherein no allocation takes place.

Further, from Fig. 18, it is observed that execution time in MP-
ORA remains lower but steady in all the test cases. On the other
hand, the execution time in SP-RL algorithm gradually increases
with the increase in available resources. Also, a sudden increase
in the execution time at ¢ = 160 is observed. One logical justifica-
tion for such behaviour could be in the implementation of a linear
function approximator in SP-RL. Because with the increase in
the number of resources, the complexity of state representation
increases.

From Fig. 19, it is observed that the number of consumers
allocated, rises only in the beginning. Later the number of con-
sumers allocated becomes steady in all the algorithms. In specific,
number of allocated consumers increases when ¢ = 40 is changed
to ¢ = 80, but for ¢ = 160 and ¢ = 320, average number of allo-
cated consumers are approximately same. One of the interesting
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observation here is a number of allocated consumers are nearly
the same in all the algorithms in every test cases.

Finally, from Figs. 20-22, the resource utilisation of all the
three resources in different test cases is observed. The resource
utilisation gradually increases with the increase in the availability
of the resources. Although, utilisation is observed nearly the same
in all the algorithm, in MP-ORA algorithm number of allocated
consumers are comparatively higher.

5.5. Impact of time-varying resource request

In this experimental setting, we aim to evaluate the impact
of the time-varying resource requests for different number of
consumers. Also, we set the probability of higher consumer,
i.e, e = 0.3 and capacity multiplier ¢ = 40, i.e., a, = (CPU =
400, Memory = 2000, Storage = 4000). In this setting, we design
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four test cases having different time-step tpqe = 200, tmax = 400,
tmax = 600 and t;,qx = 800. Also, we evaluate the algorithm based
four different evaluation parameters, namely, provider’s social
welfare, execution time (allocation delay), number of consumers
allocated, and resource utilisation.

From Fig. 23, social welfare gradually increases with the in-
crease in the number of arriving consumers. Also, similar to
consistent resource requests setting, social welfare in FCFS and
Offline Greedy algorithm are negligible comparatively. So social
welfare observed in SP-RL and Optimal Price is nearly the same,
whereas social welfare is rising as high as double compared to SP-
RL algorithm. Therefore, again the overall, social welfare observed
in that MP-ORA is more compared to SP-RL algorithm in all test
cases.

Moving to execution time, from Fig. 24, similar to the con-
sistent resource request, execution time observed in MP-ORA
remains steady with the increase in the number of consumers. On
the other hand, the execution time in SP-RL algorithm gradually
increases with the increase in available resources. One interesting
observation is, until t;,.,, = 600, execution time rises gradually in
MP-ORA algorithm, then it is levelled-off.

Further, from Fig. 25, it is observed that the number of allo-
cated consumers in MP-ORA algorithm is maximum as compared
to other algorithms, except for the Offline Greedy algorithm. Also,
it is observed that initially, the number of allocations rises until
it reaches its threshold, then begins to fall.
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Furthermore, Figs. 26-28 depict the resource utilisation of all
the three types of resources in different test cases, respectively.
Since in an online setting, all the resources do not get allocated
at once, so its resource utilisation always falls below the offline
setting, i.e., offline greedy algorithm. Overall, in all test cases,
resource utilisation is lowest in MP-ORA algorithm as compared
to all the benchmarks algorithms.

Besides, we compare the performance of the novel MP-ORA
algorithm with the consistent consumer requests denoted as
MP-ORA-C and the time-varying consumer requests denoted as
MP-ORA-TV. To begin with, from Fig. 29, the higher number of
consumers are allocated in MP-ORA-TV setting, as compared to in
MP-ORA-C setting. This rise in the number of allocated consumers
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could be due to the higher availability of resources. An inter-
esting observation is, in the beginning, the number of allocated
consumers increases with the number of arriving consumers, but
later it is levelled off. For instance until t,,c = 600, number of
allocated consumers reached a threshold value of about 550, but
then it remained consistent for t,,,x = 800. One reason for this
behaviour could be consumption of resources must have reached
its peak value, such that no further consumers get allocated.
Overall, this provides evidence that novel MP-ORA is compatible
with the time-varying consumers.

Further, to provide evidence of the enhanced performance
of the MP-ORA in a time-varying setting, we compare its social
welfare with consistent resource requests. From Fig. 30, it is
visible that, MP-ORA-TV naturally has higher social welfare, since
it has a comparatively higher number of allocated consumers.
However, from Fig. 30 it is seen that unlike Fig. 29, social welfare
continues to increase with increase in number of consumers.
This analysis illustrates that social welfare depends on the type
of consumers allocated rather than the number of consumers
allocated. Therefore, novel MP-ORA mechanism-based allocation
decisions are optimised such that it maximises the overall social
welfare.

Therefore, from the above results and discussion in all the
experimental settings, it is clear that novel MP-ORA algorithm
has higher social-welfare for the providers. Also, novel MP-ORA
algorithm, ensures the stability of the online market by keep-
ing efficient resource utilisation and truthfulness of the arriving
consumers. Finally, from the time-varying experimental setting,
we showed that the proposed approach is compatible with the
time-varying resource requests.

6. Related work

Classical resource allocation problems are solved using differ-
ent offline mechanisms [48,49], wherein the resource allocation
mechanism is aware of the resource demands. The primary ob-
jective of such an offline mechanism is to maximise the social
welfare of the providers. For instance, Wu et al. [50] proposed
a clique based winner determination approach for combinatorial
auctions to find optimal resource allocation matching. Similarly,
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Zhou et al. [49] proposed a branch-and-bound based optimal
resource allocation approach. However, the existing offline mech-
anism fails to make optimal allocation decisions in practical set-
tings with uncertain future demands. Owing to this heuristic
algorithms combined with the offline mechanism were widely
adopted for allocation and payment decisions. For instance, Ne-
jad et al. [51] proposed an integer programming based mecha-
nism for truthful allocation of resources in an auction paradigm.
In this regard, many other heuristics approaches [52-54] have
been proposed for the allocation of multi-unit resource require-
ments. These mechanisms could achieve truthfulness based on
the monotonic allocation rule and critical value-based payment
rule. However, the heuristic-based mechanism leads to higher
execution and also lowered the social welfare of the provider.
Besides, most of them were well suited for offline market settings.

Further, for decades online mechanisms are being studied [55],
which is an extension of offline setting. The classical online
problem is appointing an optimal secretary among the sequence
of applications [14,56]. In the literature, many different solu-
tions have proposed [10,16], which assumed that consumer ar-
rives randomly from the set of the known distribution of con-
sumers. However, these approaches are based on the static allo-
cation rule, so they failed to address the challenges in an online
setting. Recently a heuristic-based online approach does not
guarantee a truthful mechanism, for instance, Zhang et al. [57],
which is based on integer programming. However, the complexity
of such algorithms increases with the number of constraints.
Further, to adapt to the dynamically changing constraints in
the online setting, machine learning-based online mechanisms
are being implemented. For instance, [30,58] introduced an RL
based online resource allocation mechanism. However, these
approaches mainly focused on maximising social welfare and
does not guarantee truthfulness. Later Blum et al. [26] proposed
a strategyproof online mechanism for online resource alloca-
tion. Then, Babaioff et al. [59] proposed an online mechanism,
wherein a stream of agents submit their resource request, which
needs to be accepted or rejected immediately. In this regard,
within the literature, Cai et al. [31], Du et al. [60] proposed
RL based mechanism to allocate to strategic agents in a cloud
computing environment. However, again this work focused on
maximising the revenue and did not handle the strategyproof-
ness. Besides, all the existing machine learning approaches con-
sidered the complex state space representing the correlation
between the future and the current allocation decisions. Later,
Stein et al. [33] proposed a similar online mechanism, which
is closely related to our work, which partially represented the
complex state space. However, state representation becomes
complicated with the increase in the number of agents. In sum-
mary, existing work has archived good results in an online setting
to some extent, however still there exist shortcomings: (1) exist-
ing online mechanism design cannot satisfy strategyproofness in
such an uncertain setting; (2) representation of the state-space
for dynamically arriving distinct consumers; and (3) adapting to
the dynamically changing environment to maximise the social
welfare of the provider. To address these shortcomings, we in-
vestigate the RL based online mechanism that would not only
truthfully maximise the social welfare of the provider but also
efficiently build the state space in such an online setting (see
Table 4).

7. Conclusion

This research focuses on building a novel online mechanism
to address the challenges associated with ORA paradigms. Specif-
ically, we propose a reinforcement learning-based strategyproof
an online mechanism that gradually adapts itself to the dynamics
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Table 4
Comparison of our approach with related work.

# Mechanism TV OL/OF Type HT IR S
Angelelli et al.[48] X OF HU X X X
Zhou et al. [49] X OF AP X X X
Wu et al.[50] X OF AP X v v
Nejad et al. [51] X OF HU X X 4
Liu et al. [53] X OF AP X 4 v
Zhang et al. [54] X OL HU v v v
Mashayekhy et al. [52] X OF AP X X v
Parkes et al. [55] X OF AP X 4 v
Cheng et al. [30] X OF LR v X X
Mao et al. [58] X OF LR 4 X X
Cai et al. [31] X OF LR v X X
Du et al. [60] X OF LR X X X
Jixian et al. [57] v oL HU v v v
Stein et al. [33] v oL LR v v v
MP-ORA 4 OL LR 4 4 v

TV: time-varying; OL: online; OF: offline; HU: heuristic; AP:approximation; LR:
Learning; HT: heterogeneous resource IR: individual rationality; S:strategyproof.

of the environment. In this context, we implement a custom
proximal policy optimisation algorithm to build a monotonic al-
location policy. Further, design a critical payment based payment
policy. In this regard, the novel MP-ORA mechanism incentivises
each consumer to report truthfully and maximise the social wel-
fare of the provider. Towards the end, the novel MP-ORA mech-
anism outperformed the existing state-of-the-art mechanisms
in series of experiments to evaluate social welfare and alloca-
tion efficiency. In addition, the proposed mechanism is faster as
compared to the learning-based SPRL mechanism, having higher
resource utilisation. For future work, we aim at designing an
online mechanism for group resource allocation which would
maximise the availability in presence of multiple independent
resource providers of ORA paradigms.
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