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Abstract

Worldwide, the nitrogen use efficiency (NUE) for crop plants is of great concern. The burgeoning world population needs crop
genotypes that respond to higher nitrogen and show a direct relationship to yield with use of nitrogen inputs, i.e. high nitrogen-
responsive genotypes. However, for fulfilling the high global demand of organic produce, it requires the low nitrogen responsive
genotypes with greater NUE and grain yields. The lack of knowledge about precise regulatory mechanisms to explain NUE in crop
plants hampers the goal of agricultural productivity. Understanding the molecular basis of NUE will enable to provide handle for
crop improvement through biotechnological means. With the advent of modern genomics and proteomics approaches such as sub-
tractive hybridization, differential display, and microarray techniques are revolutionizing to identify the candidate genes which play a
pivotal role in the regulation of NUE. Beside it, quantitative real-time polymerase chain reaction technology is also being used to
establish marker-trait association for NUE. The identification of potential candidate genes/proteins in the regulation of NUE will
serve as biomarker(s) for screening genotypes for their nitrogen responsiveness for optimization of nitrogen input in agriculture. This
paper describes the molecular basis of NUE with respect to nitrogen metabolism and its intimate relationship with carbon metabo-
lism, use of molecular-physiological-genetics approaches for understanding the role of various genes/proteins, and their validation to
use as biomarker(s) for determining genotypic potential for NUE. Since NUE in plants is a complex trait which not only involves the
primary process of nitrogen uptake and assimilatory pathways but also a series of events, including metabolite partitioning, sec-
ondary remobilization, C-N interactions, as well as molecular signalling pathways and regulatory control outside the metabolic cas-
cades. Therefore, identification of novel nitrogen responsive genes and their cis- and trans-acting gene elements is essential. Thus,
fishing out a single gene, biomarker or a master regulator controlling complex trait of NUE could serve as an appropriate strategy for
nitrogen management in agriculture.
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Although the “Green Revolution”-based modern agriculture
helped in increasing crop production and averting hunger, it also
had a number of negative ecological consequences such as
depletion of lands, decline in soil fertility, soil salinization, soil
erosion, deterioration of environment, health hazards, poor sus-
tainability of agricultural lands, and degradation of biodiversity.

The indiscriminate use of pesticides, irrigation, and imbalanced
fertilization has threatened sustainability. In the last 50 years,
the N fertilization of crop plants worldwide has increased more
than 20-fold. However, use of this fertilizer is generally ineffi-
cient, as only about a third of the fertilizer applied is actually
absorbed by crops, and 50-70% is lost from the plant-soil sys-
tems (Tabashnik 1994). Unused fertilizer can leach into the
environment where it induces algal blooms, contaminates drink-
ing water, and depletes aquatic oxygen to create dead zones, like
those found in the Gulf of Mexico (Janmaat and Myers 2003).
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Elevated nutrient inputs into aquatic ecosystems due to heavy
use of N and phosphorus leads to eutrophication and increases
pathogenic infection in aquatic life forms. On the other hand,
issues like declining use efficiency of inputs in the form of nutri-
ents like nitrogen and dwindling output-input ratios have ren-
dered crop production less remunerative. Demand for low-input
sustainable crop cultivation is increasing to meet the need for
environment-friendly agriculture. Hence, we need to reconsider
our agricultural practices and adopt environmental-friendly prac-
tices. Consequently, developing genotypes with high NUE is
one of the major objectives of crop breeding programs (Delmer
2005).

The question therefore arises, can we, based on our knowl-
edge and the experimental techniques now available to us,
improve the efficiency of nitrogen use by crop plants? Two pos-
sibilities appear, one to make best use of the available variation
in nitrogen-use characteristics within the gene pool and second,
to try to introduce new genes which might increase that varia-
tion. The best approach would be to identify and select cereal
cultivars which absorb and metabolize nitrogen in the most effi-
cient way (increased NUE) for grain or silage production, i.e.
genotypic potential for high NUE. However, fulfilling the high
global demand of organic produce requires low nitrogen-respon-
sive genotypes with greater NUE and grain yields.

Nitrogen use efficiency (NUE) in crop plants 
Nitrogen use efficiency (NUE) at the plant level is its ability

to utilize the available nitrogen (N) resources to optimize its pro-
ductivity. This includes nitrogen uptake and assimilatory
processes, redistribution within the cell, and balance between
storage and current use at the cellular and whole plant levels. In
terms of agriculture, it is the optimal utilization of nitrogenous
manures or fertilizers for plant growth, yield, and protein con-
tent, as atmospheric nitrogen gas is not utilized by higher plants,
except symbiotic legumes. Nitrogen use efficiency is calculated
as grain yield/ available nitrogen content (soil + fertilizer nitro-
gen or only fertilizer nitrogen). There are two components of
nitrogen use efficiency: 1) the efficiency of absorption (uptake)
and 2) the efficiency with which the N absorbed is utilized to
produce grain (utilization) (Moll et al. 1982). Nitrogen uptake
efficiency was calculated as plant nitrogen content/available
nitrogen content (soil + fertilizer nitrogen or only fertilizer nitro-
gen), and nitrogen utilization efficiency was calculated as grain
yield/plant nitrogen content. To increase agricultural production,
several technologies and practices hold promise for improving
NUE. Some possible opportunities are (Giller et al. 2004): i.)
Increasing yield potential and yield stability through genetic
improvement and crop management, ii.) Balanced nutrition to
allow optimum utilization of available N, iii.) Split N applica-
tions to better match N requirements of crops through the grow-
ing season, iv.) More efficient fertilizer products that better syn-
chronize N release and crop N demand (e.g. slow- and con-
trolled-release fertilizers), v.) Fertilizer additives to reduce N
losses (e.g. urease and nitrification inhibitors), vi.) Site-specific
N-management prescriptive (before planting), corrective (Using
in-season diagnostic tools), or both, vii.) Decision support sys-

tems: computer-based models or simple field assessment tools
and interpretation aids, viii.) Genetic improvement in N recov-
ery or N utilization efficiency of some crops (primarily those
having received little attention by breeders in the past such as
under-utilized crops), and ix.) Use of organic manures, green
manuring of legumes in cropping systems.

While the amount of N available to the plant can be improved
by using sustained-release fertilizers, split applications, mini-
mizing fertilizer losses, and other nutrient and crop management
strategies (Abrol 1993; Kanwar and Katyal 2000), the inherent
efficiency of the plant to utilize available N-inputs for higher
productivity needs to be tackled biologically. Since overuse of
inorganic nitrogenous fertilizers is hazardous to the environ-
ment, unused fertilizers are washing off fields into rivers, poi-
soning coastal waters, and causing acid rain. Therefore, the cre-
ation of crops with high nitrogen efficiency is agriculturally
important and might pose a big challenge for molecular breed-
ing. Marker-assisted selection of genotypes responding to low
and high nitrogen inputs will enable us to enhance agricultural
productivity and production of organic produce. This in turn, led
to the identification of novel nitrogen responsive genes and their
cis- and trans-acting gene elements, which can be used as bio-
markers for determining of genotypic potential of NUE. Such
types of biomarkers would enable to help in optimization of
nitrogen inputs in crop plants including cereal production.

Factors affecting NUE 
Many 15N recovery experiments have reported loss of N-fer-

tilizer in cereal production from 20 to 50%. These losses have
been attributed to the combined effects of denitrification,
volatilization, and/or leaching (Francis et al. 1993; Olson and
Swallow 1984). Loss of fertilizer N results from: 

i.) Soil nitrification/denitrification: Certain soil bacteria that 
thrive in saturated (anaerobic) soil will convert nitrate N to 
oxygen and nitrogen gases. Reported gaseous N losses due to 
denitrification from applied fertilizer N include 9.5% in winter
wheat (Aulakh et al. 1982), 10% in lowland rice (DeDatta et 
al, 1991), and 10 (conventional tillage) to 22% (no-till) in 
corn (Hilton et al. 1994).  Incorporation of straw and/or appli-
cation of straw on the surface of zero-till plots can double 
denitrification losses (Aulakh et al. 1984).

ii.)NO3
--leaching: All applied N-fertilizer sources eventually 

convert completely to the nitrate N form. This form is not 
held tightly by soil particles and can be leached from the soil 
profile with excessive rains especially on lighter textured soil. 
When fertilizer N is applied at rates in excess of that needed 
for maximum yield in cereal crops, nitrate leaching can be 
significant (Olson and Swallow- 1984; Raun and Johnson- 
1995). In cooler temperate climates, nitrate losses through tile 
drainage have approached 26 kg N ha-1 yr-1 under conventional
tillage corn when only 115 kg N ha-1 was applied (Drury et al. 
1996).

iii.)Volatilization of urea-based products: Urea-based fertilizers 
products are susceptible to volatilization losses of N if sur-
face applied and then not incorporated. Urease enzyme in the 
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soil and plant residues converts the urea component to free 
ammonia gas. If this conversion occurs at the soil surface and 
is accompanied by warm sunny days, as much as 15-20% of 
the urea based nitrogen may volatilize within a week after 
application.

iv.)Inherent ability of genotypes.

v.) Presence of soil microflora.

vi.)Beside these, nitrogen metabolism is a major contributing 
factor which affects nitrogen use efficiency.

Molecular mechanism associated with nitrogen metab-
olism
Nitrogen uptake

Nitrogen is one of the important mineral nutrients needed in
greatest abundance by plants. However, plants also compete for
nitrogen in the soil with abiotic and biotic processes such as ero-
sion, leaching, and microbial consumption. Soil nitrogen is also
lost when crops are harvested and plant material is removed
from the soil. To be competitive, plants have evolved several
mechanisms to acquire nitrogen at low concentrations and to use
a variety of forms of nitrogen. Plants can assimilate inorganic
forms, such as nitrate and ammonia, and organic forms, such as
urea. Some plants, including legumes, can fix dinitrogen gas in
association with symbiotic bacteria (Mylona et al. 1995).
Among the various forms of N available to the plant, nitrate
(NO3

-) is the major source of nitrogen for the vast majority of
plants. In most plant species, only a proportion of the absorbed
NO3

- is assimilated in the root, the remainder being transported
upwards through the xylem for assimilation in the shoot. In situ-
ations of excess NO3

- supply, high concentrations of NO3
- can

accumulate in the vacuole and some of the NO3
- may also be lost

to the soil solution by efflux across the PM (Forde and Clarkson
1999). The vacuolar store of NO3

- may be used to help maintain
the concentration of the cytosolic NO3

- pool, which has been
reported to be held relatively constant under a wide range of
external NO3

- concentrations (Miller and Smith 1996). Thus, an
essential element in the process of NO3

- assimilation is the traf-
ficking of the NO3

- ion across membranes.

Nitrate Uptake
Nitrate uptake by root cells is a key step of nitrogen metabo-

lism and has been widely studied at the physiological and mole-
cular levels (Orsel et al. 2002). In the soil solution, nitrate is car-
ried towards the root by bulk flow and is absorbed into the epi-
dermal and cortical symplasm. Within the root symplasm, NO3

-

has four fates: (1) reduction to NO2
- by the cytoplasmic enzyme

nitrate reductase, (2) efflux back across the plasma membrane to
the apoplasm, (3) influx and storage in the vacuole, or (4) trans-
port to the xylem for long-distance translocation to the leaves
(see Fig. 1). Following long-distance translocation, NO3

- must
leave the xylem and enter the leaf apoplasm to reach leaf meso-
phyll cells, where NO3

- is again absorbed and either reduced to
NO2

- or stored in the vacuole. Little attention has been paid to
the transport processes involved in leaf absorption of NO3

-, how-
ever, the high NO3

- concentrations of the xylem sap (5-40 mM)
and the low levels of NO3

- in the phloem (Schobert and Komor

1992) indicate that NO3
- must be efficiently absorbed by leaf

cells. 
The nitrate uptake system in plants must be versatile and

robust because plants have to transport sufficient nitrate to satis-
fy the total demand for nitrogen in the face of external nitrate
concentrations that can vary by five orders of magnitude. To
function efficiently in the face of such environmental variation,
plants have evolved a transport system that is active, regulated,
and multiphasic. The energy that drives nitrate uptake comes
from the proton gradient maintained across the plasma mem-
brane by the H+-ATPase. In addition, NO3

- uptake is associated
with depolarization of the plasma membrane (an increase in the
positive charge inside the cell). The accumulated evidence from
kinetic studies indicates that roots have at least three distinct
NO3

- uptake systems (Forde and Clarkson 1999; Glass and
Siddiqi 1995), two of which have a high affinity for NO3

-, while
the third has a low affinity. One of the high-affinity systems is
strongly induced in the presence of an external NO3

- supply and
is known as the inducible high-affinity transport system (or
iHATS), while the second high-affinity system (the cHATS) is
constitutively expressed (Aslam et al. 1992). Typically, these
systems have saturable kinetics. Constitutive high affinity trans-
port systems (CHATS) are characterized by low values of both
Km and Vmax (typically 6-20 µM and 0.3-0.82 µmol g.h-1,
respectively). High affinity transporters (IHATS) with higher
Km and Vmax values (typically 20-100 µM and 3-8 µmol g.h-1,
respectively) are induced within hours to days of exposure to
NO3

- Finally, constitutive low affinity transporters (LATS),
which can significantly contribute to nitrate uptake at concentra-
tions above 250 mM, fail to saturate at NO3

-concentrations as
high as 50 mM. Thermodynamic evaluations demonstrate that
NO3

-uptake by LATS is also active, in spite of the linear
response to concentration (Glass et al. 1992).

Ammonium assimilation
Since ammonium assimilation requires less energy than that

of nitrate (Bloom et al. 1992), ammonium is the preferential
form of nitrogen uptake when plants are subjected to nitrogen
deficiency (Gazzarrini et al. 1999). However, excessive ammo-
nium uptake into plants can be toxic (Britto et al. 2001;
Kronzucker et al. 2001). In contrast to nitrate, plants in general
tend not to accumulate high concentrations of ammonium ions.
Toxicity symptoms frequently occur if crop plants are grown in

Fig. 1. Fate of nitrate within root
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ammonium in the absence of nitrate (Britto and Kronzucker
2002), although rice is an exception. Therefore, ammonium
uptake and metabolism in plants must be tightly regulated.  In
anaerobic agricultural soils, in particular in paddy fields, ammo-
nium is the major form of inorganic nitrogen, making rice
almost totally dependent on ammonium nutrition during a large
part of the cropping season. Also, in terms of the efficiency of
fertilizer utilization, ammonium is superior to nitrate in paddy
soil (Yoshida 1981). 

The ammonium uptake is facilitated by the presence of trans-
porter proteins. Both HATS and LATS for ammonium uptake
are present in plant roots that are constitutive and do not seem to
be significantly induced by ammonium (Glass et al. 2002).
However, rice is able to take up NH4

+ ions from the soil solution
when grown in a paddy field, through the action of ammonium
transporters (AMTs). Ammonium transporters that have been
isolated and partially characterized in several plant species, such
as Arabidopsis thaliana, (AtAMT1;1, AtAMT1;2, AtAMT1;3,
and AtAMT2; Gazzarrini et al. 1999; Kaiser et al. 2002;
Ninnemann et al. 1994; Sohlenkamp et al. 2000; Sohlenkamp et
al. 2002), Brassica napus (BnAMT1;2; Pearson et al. 2002),
Lotus japonicus (LjAMT1;1, LJAMT2;1; Salvemini et al. 2001,
Simon-Rosin et al. 2003), Lycopersicon esculentum (LeAMT1;1,
LeAMT1;2, and LeAMT1;3; Becker et al. 2002; Lauter et al.
1996; von Wirén et al. 2000) or Oryza sativa (OsAMT1;1,
OsAMT1;2, OsAMT1;3, OsAMT2;1, OsAMT2;2, OsAMT2;3,
OsAMT3;1, OsAMT3;2, OsAMT3;3, and OsAMT4 (Loqué &
von Wirén, 2004; Suenaga et al. 2003).

A family of five ammonium transporter genes designated
AMT1;1 to AMT 1;5 were originally identified in A. thaliana,
which were related to cyanobacterial ammonium transporters,
while in tomato, only three AMT1 genes were isolated. Both
plants had a second AMT2 gene whose sequence is more closely
related to transporters isolated from Saccharomyces cerevisiae
and Escherichia coli (Loqué and von Wirén 2004). However, in
rice 10 different AMT genes have been identified which have
been divided into two types of transporters i.e., (1) high efficien-
cy ammonium transporters and (2) low efficiency ammonium
transporters which are further classified into four different
clades on the basis of protein sequence homology (Suenaga et
al. 2003). Interestingly, rice is one of the few crop plants that is
adapted to high ammonium nutrition. The AMT proteins have
11 transmembrane- spanning domains, with an extracytosolic N-
terminus and a cytosolic C-terminus (Loqué and von Wirén
2004). Additional genes encoding tonoplast intrinsic proteins
have been identified, which transport ammonium into the vac-
uole (Loqué et al, 2005).

The ammonium taken up by plant roots or produced by a
reduction of nitrate is first assimilated by glutamine synthetase
(GS) to yield the amino group of Gln. In higher plants, Gln
serves as a major source transported from root to shoot through
the xylem. GS is coupled to glutamate synthase (GOGAT) in a
so-called GS/GOGAT cycle. GS produces Gln from ammonium
and Glu, and GOGAT transfers the amino group of Gln to 2-
oxoglutarate to generate two molecules of Glu in the cycle.
Besides forming glutamate, glutamine can also donate its amide

group to aspartic acid to form asparagines. This reaction is cat-
alyzed by asparagine synthetase. These four amino acids are pre-
cursors of all nitrogen-containing organic biomolecules. The
translocation from sources to sinks occurs in this form (Lea and
Miflin 1980; Peoples and Gifford 1993). The fourth major
enzyme in nitrogen assimilation is Glutamate dehydrogenase
(GDH). This enzyme can catalyze both forward and backward
biochemical reactions; the amination of 2-oxoglutarate into glu-
tamate (anabolic reaction) and/or the deamination of glutamate
into ammonia and 2-oxoglutarate (catabolic reaction) (Lea et al.
1990). These organic nitrogen compounds assimilate in leaves
and stem of plants in the form of protein, amino acids,
nucleotides, and chlorophyll (Lea 1993). Although, there is wide
acceptance for the GS/GOGAT cycle, controversy still exists as
to the role of the enzyme GDH in higher plants because the gen-
eral characteristics of the enzyme offer conflicting evidence with
regard to its role as an assimilating enzyme. In vitro the thermo-
dynamically favored direction of the reaction is the production
of glutamate, but the enzyme is reported as having a very high
Michaelis constant with respect to ammonium, a characteristic
that argues strongly against an assimilatory role (Milfin and Lea
1980).

Metabolite Partitioning and C: N Interactions 
At first sight, nitrate is utilized in a linear pathway that

involves the uptake and transport of nitrate within the plant, fol-
lowed by nitrate assimilation, ammonium assimilation, amino
acid biosynthesis, and protein synthesis. There are, however,
complex interactions with many other aspects of nitrogen metab-
olism, including (i) the storage and remobilization of nitrate in
different parts of the plant, (ii) de novo ammonium assimilation,
(iii) the recycling of ammonium released during photorespira-
tion (Hirel and Lea 2001), (iv) the distribution of nitrogen
between the highly branched pathways of amino acid biosynthe-
sis (Morot-Gaudry et al, 2001), and (v) the multifarious fates of
amino acids, which can be exported, stored in the vacuole, used
for protein synthesis, or diverted into secondary metabolic path-
ways leading to phenylpropanoids, alkaloids, and tetrapyrroles
(Heldt 1996). There is also a complex interaction with carbon
metabolism which provides (vi) malate as a counter-anion to
prevent alkalinization (Martinioa and Rentsch 1994), (vii) 2-
oxoglutarate as the primary acceptor of ammonium in the
GOGAT pathway (Heldt 1996), and (viii) numerous other
organic acids and phosphorylated intermediates that are required
as carbon precursors in the various amino acid pathways
(Morot-Gaudry et al. 2001). Further, (ix) reactions in photosyn-
thesis or carbohydrate breakdown are required to generate the
reducing equivalents that are consumed during the reduction of
nitrate to ammonium (Foyer et al. 2001; Kaiser et al, 2000).

Enzymes and Genes involved in carbon and nitrogen
metabolism

The most studied gene is that for NR, the first gene shown to
be nitrate inducible (Cheng et al. 1986; Crawford et al. 1986;
Tang and Wu 1957). NR mRNA accumulates in plants within
minutes after treatment with nitrate at concentrations from 10
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µM to 50 mM (Aslam et al. 1993; Cheng et al. 1991; Gowri et
al. 1992; Melzer et al. 1989; Trischner et al. 1993). In higher
plants, the expression of the NR genes is influenced by several
external and endogenous factors and is highly regulated at the
transcriptional as well as post-translational levels (Meyer and
Smitt 2001). The over-expression of either the NR or the NiR
gene in plants increases mRNA levels and often affects N-
uptake. However, the increased uptake of N does not seem to
increase the yield or growth of plants, regardless of the N source
(Andrews et al. 2004; Good et al. 2004). This is believed to be
due, in part, to the complex regulation of both NR and the path-
way as a whole. Recently, Lea et al, 2006 demonstrated that
post-translational regulation of NR strongly affects the levels of
free amino acids, ammonium, and nitrate, whereas transcription-
al regulation has only a minor influence. Plants expressing fully
unregulated NR accumulate high concentrations of asparagine
and glutamine in leaves; however these transgenic plants grow
and developed normally, despite having an NR enzyme that is
active during both light and dark periods.

Others genes involved in nitrate uptake or nitrite reduction
include nitrate transporters (NRT1and NRT2), NiR, Fd NADP+

oxidoreductase (FNR), 6-phosphogluconate dehydrogenase
(6GDPH), and S-adenosyl-L-methionine-dependent uropor-
phyrinogen III methyltransferase (UPM1). Genes involved in
ammonium assimilation, encoding specific isoforms of GS and
GOGAT, are also induced (reviewed in Koch 1997; Lam et al.
1996; Stitt 1999). In higher plants, glutamine synthetase (GS) is
represented by two groups of proteins-the cytosolic and plastidic
forms (Hirel et al. 1993). A large number of studies on various
plant species including both monocots and dicots show that
cytosolic GS (GS1) is encoded by a complex multigene family,
whereas plastidic GS (GS2) is encoded by a single gene. In rice
however, a third GS has also been identified designated as
OsGS1;3, which specifically expresses in the spikelet  (Tabuchi
et al. 2007). 

Glutamate synthase (GOGAT) occurs as two distinct iso-
forms-ferridoxin and NADH-dependent-both of which are locat-
ed in the plastid. Since the discovery of the role of GS/GOGAT
in ammonium assimilation in higher plants (Miflin and Lea
1976), there has been great interest in the understanding of
mechanisms controlling the regulation of this pathway (Harrison
et al. 2000). Mutants or transgenic plants with altered levels of
GS/GOGAT are used to determine the effects of these proteins
on plant development and to study the expression of the differ-
ent members of the GS multigene family (Coschigano et al.
1998). Although several studies demonstrate that an increase in
GS activity in transgenic plants has no effect on the phenotype,
other researchers show a direct correlation between an enhanced
GS activity in transgenic plants and an increase in biomass or
yield, upon incorporating a novel gs1construct (Good et al.
2004, Hirel et al. 2007). In comparison to GS, few reports have
described the production of transgenic plants overexpressing
GOGAT genes. The most interesting results were obtained by
Yamaya et al. 2002, who overexpressed OsNADH-GOGAT1 in
rice under the control of its own promoter and found that trans-
genic rice plants show an increase in spikelet weight (up to

80%). Plant height and spikelet number are unaffected. This
study shows that overexpression of NADH-GOGAT1 can be
used as a key step for N use and grain filling in rice and other
cereal crops. Over the past few years, attention was focused on
the enzyme asparagine synthetase (AS), which catalyzes the for-
mation of asparagine (Asn) and glutamate from glutamine (Gln)
and aspartate. In higher plants, AS is encoded by a small gene
family. For starch and organic acid metabolism, mRNA concen-
trations for phosphoenol pyruvate carboxylase (PEPC; involved
in organic acid metabolism) increase and those for ADP-glucose
pyrophosphorylase (AGPS2; involved in starch synthesis)
decrease after 2 h of treatment with 12 mM nitrate (Sheible et al.
1997). Transcripts for other organic acid metabolism enzymes -
cytosolic pyruvate kinase, citrate synthase and NADP+ - isoci-
trate dehydrogenase - were present in NR mutant plants in
greater amounts than in wild type plants grown in 12 mM
nitrate, implying that these genes also respond to the nitrate sig-
nal (Sheible et al. 1997).

Molecular signaling network for NUE
Plants constantly sense changes in nitrogen availability and

respond appropriately by modulating gene expression. Plants
employ multiple routes for the long-distance signaling and com-
munication of nitrogen status. One of these depends on nitrate
itself (nitrate-specific signaling), while another uses cytokinin as
a messenger. Recent studies suggest that nitrate-specific signal-
ing functions predominantly in the context of the synthesis of
amino acids and nucleic acids (Fig. 2). This pathway includes
the control of the expression of a wide variety of genes. On the
other hand, cytokinin-mediated-signaling is related mainly to the
control of nitrogen partitioning and development (Fig. 2).
Nitrogen-dependent cytokinin accumulation and the involve-
ment of His-Asp phosphorelay systems are characteristic of this
pathway (Sugiyama and Sakakibara 2002). The coordination of

Fig. 2. Multiple routes for communicating nitrogen availability in plants. Nitrate acti-
vates a network of gene regulation to provide amino acids and uncleic acids, and
also reguates cytokinin biosynthesis and translocation to drive the His-Asp phospho-
relay in target cells. Abbreviations in parentheses represent genes; NRT nitrate trans-
porter, NR nitrate reductase, NiR nitrite reductase, GS2 plastid glutamine synthetase,
GOGAT MDH malate dehydrogenase, Fd ferredoxin, FNR Fd-NADP+ oxidoreductase,
G6PDH glucose-6-phosphate dehydrogenase, 6PGD 6-phospogluconate dehydroge-
nase
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both regulatory pathways seems to be crucially important for the
integration of nitrogen signals at the whole plant level
(Sakakibara 2003).

A major route of inorganic nitrogen signaling is medi-
ated by nitrate

Nitrate is a substrate for nitrogen assimilation and also func-
tions as a primary signal triggering gene expression. The uptake
of nitrate ions and their subsequent distribution throughout the
plant body are enabled by a series of nitrate transporters
(Crawford and Glass 1998). Although nitrate receptors (sensors)
have not yet been identified, it seems clear so far that a nitrate-
specific signaling pathway activates genes related to nitrate
assimilation and amino acid and nucleotide synthesis (Fig. 3).
Nitrate-specific induction was demonstrated for enzymes func-
tioning in nitrate uptake (Tsay et al. 1993), nitrate reduction
(Vincentz et al. 1993), ammonia assimilation (Redinbaugh and
Campbell 1993; Sakakibara et al. 1997), provision of reducing
power (Matsumura et al. 1997; Redinbaugh and Campbell 1998;
Ritchie et al. 1994), allocation of the carbon skeleton for organic
acid synthesis (Scheible et al. 1997), and modulation of root
architecture (Zhang and Forde 1998). In all these cases, the
induction of expression did not require protein synthesis and
therefore appeared to depend on signal transduction elements
already present.

Transcriptional regulation of several hundreds of nitrate
responsive genes by nitrate as a signal requires cis-acting regula-
tory sequences or nitrate response elements (NRE) (Raghuram et
al. 2006). One such sequence, originally reported to be com-
prised of an A[G/C]TCA core sequence motif, preceded by a 7-

bp AT rich region, based on promoter deletion analyses in
nitrate and nitrite reductases from Arabidopsis thaliana and
birch (Hwang et al. 1997; Warning and Hatchel 2000).
However, a genome-wide computational analysis of all the
known nitrate responsive genes in Arabidopsis and rice indicat-
ed that these motifs were present almost randomly throughout
these genomes, and were neither specific nor common to nitrate
responsive genes (Das et al. 2007). These findings demand a
fresh search for candidate sequences that qualify to be NREs in
plants. The identification of putative cis elements that are
responsive to carbon and nitrogen signaling interactions
(Palenchar et al. 2004) also necessitate a search for different cis-
regulatory elements that might work in concert. Identification of
such regulatory elements provides an end point for nitrate sig-
naling and provides new avenues for characterizing/manipulat-
ing the rest of the signaling pathway to enhance NUE.

Hormones and nitrate signaling
Cytokinin metabolism and translocation could be modulated

by the nitrogen nutrition status i.e. the changes in root pressure
and root water permeability which occur in response to nitrate
uptake (Hoarau et al. 1996). Thus, nitrate ions and cytokinins
are concomitantly translocated from root to shoot. Nitrogen-
dependent accumulation of cytokinin was also observed in roots
of Arabidopsis thaliana (Takei et al.  2002) and barley
(Samuelson and Larsson 1993), suggesting that nitrogen-depen-
dent cytokinin accumulation is common among higher plants.
After the nitrogen signal has been converted into a rise in
cytokinin level, cytokinin is recognized by target cells and the
signal is transmitted to target genes and/or proteins. Recent stud-
ies have revealed that His-Asp phosphorelay systems, also
known as two-component regulatory systems, are involved in
cytokinin perception and signaling (Haberer and Kieber 2002;
Inoue et al. 2001; Suzuki et al. 2001).

Need of potential biomarkers relating NUE
In the majority of crop species, including cereal grasses, the

plant life cycle can be roughly divided into two main phases.
During the vegetative growth phase, young developing roots and
leaves behave as sink organs that efficiently absorb and assimi-
late minerals such as inorganic nitrogen for amino acid and pro-
tein synthesis. During the remobilization phase leaves start to
behave as source organs translocating carbon and organic mole-
cules to ensure the formation of new developing tissues and/or
storage tissues involved in plant survival such as seeds, tubers,
bulbs, or trunks (Masclaux et al. 2000). A better understanding
of the metabolic and genetic control of acquisition and recycling
during these two phases of plant growth and development is
therefore of particular importance not only to improve crop
quality and productivity, but also to avoid excessive use of fer-
tilizers. Until now, a number of studies have been undertaken by
plant molecular physiologists to decipher the regulatory control
mechanisms involved during the transition from sink to source
organs (Harrison et al. 2000; Hellman et al. 2000; Lewis et al.
2000; Masclaux et al. 2000). However, these approaches that
involve whole plant physiology and/or transgenic plants are lim-

Fig. 3. The metabolic pathways for nitrigen assimilation in plants. Dof1 transcription
factor acts as master regulator for the expression of photosynthetic enzymes and
thereby improving nitrogen assimilation in plants. abbreviations in patenthesis repre-
sent genes: PEPC Phospho Enol Pyruvate Carboxylase, PK Pyruvate Kinase, CS Citrate
synthase, ICDH Isocitrate Dehydrogenase
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ited in that they only allow the role of a single or limited number
of enzymes or regulatory elements to be identified and do not
account for the variation of complex traits such as nitrogen use
efficiency (NUE) often found in agronomic applications.
Conventional breeding procedures have been performed empiri-
cally over the last two decades by selecting the most appropriate
traits in terms of yield or technological characteristics to
improve plant productivity (Masclaux et al. 2000; Richards
2000). Although, these approaches have been successful in
terms of yield enhancement, there have so far been no real
attempts to understand in a more integrated manner the physio-
logical and genetic basis of these improvements, especially in
relation to NUE. At present, the use of quantitative genetic stud-
ies associated with the use of molecular markers may be a way
to identify genes involved in the genetic variation of a complex
character. Molecular markers have accelerated plant breeding in
a number of areas including biotic (disease and insect) resistance
and abiotic (drought, low nitrogen fertilization, and frost) toler-
ance. There are several types of molecular markers used in
marker-assisted slection; these include restriction fragment
length polymorphism (RFLP), random amplification of poly-
morphic DNA (RAPD), amplified restriction fragment length
polymorphism (AFLP), single sequence repeats (SSR), and sin-
gle nucleotide polymorphisms (SNPs). Marker-based technology
has already provided scientists with a powerful approach for
identifying and mapping quantitative trait loci (QTL) and would
lead to the development of a better understanding of genetic
phenomena. The development of molecular markers has facili-
tated the evaluation of the inheritance of NUE using specific
quantitative trait loci (QTLs) that could be identified. NUE is a
complex polygenic trait that has been subjected to quantitative
trait locus (QTL) analyses. The first QTL studies were focused
on integrative traits such as NUE itself or its components on dif-
ferent crop species (e.g. Bertin and Gallais 2001 on maize; An et
al. 2006 on wheat) The combination of agronomical analyses
and physiological studies on N-metabolism enabled the identifi-
cation of candidate genes putatively involved in both the control
of NUE and yield (Habash et al. 2007; Hirel et al. 2001; Obara
et al. 2001). Understanding the complexity of the N-metabolism
network through QTL analysis could lead to the cloning of regu-
latory loci or factors interacting with them. This new approach
of whole-plant N physiology has been performed on maize using
field trials (Agrama et al. 1999; Bertin and Gallais 2000; Hirel et
al. 2001). It often leads to a discussion of the concept of NUE
which represents the quantity of N used to build up a certain
amount of biomass (or yield). The study of well-chosen traits
allows the discussion of the relationship between processes cor-
responding to different levels of organization, through the iden-
tified QTL (Lebreton et al. 1995; Prioul et al. 1997). For exam-
ple, in a maize study, coincidences were detected between QTL
for yield (and its components) and QTL for GS enzyme activity,
both of which co-localize with genes encoding cytosolic GS
(Hirel et al. 2001). There is also evidence that the glutamate
dehydrogenase enzyme (NAD(H)-GDH, EC 1.4.1.2) enzyme
may also be implicated in the control of crop productivity at
least in maize as demonstrated by using a  quantitative genetics

approach (Dubois et al. 2003). GS- and GOGAT-related QTLs
were also mapped in rice (Obara et al. 2001). The size of the
maize (or even rice) genome, however, does not facilitate the
fine-mapping of these QTL and the cloning of the corresponding
genes. 

QTLs for NUE have been identified in mapping populations
of maize, rice, barley, and Arabidopsis, and their association
with plant N status has been reviewed recently (Hirel et al.
2007). In maize, studies on different genotypes or populations of
recombinant inbred lines based on NUE components, chromoso-
mal regions, and putative candidate genes have hinted at some
factors that might control yield and its components directly or
indirectly, when the amount of N fertilizers provided to the plant
is varied (Hirel et al. 2007). Marker-assisted-selection (MAS)
should be able to offer significant advantages in cases where
phenotypic screening is particularly expensive or difficult,
including breeding projects involving multiple genes, recessive
genes, late expression of the trait of interest, seasonal considera-
tions, or geographical considerations. In addition to reducing
costs of conventional breeding, MAS also has the potential to
generate time savings. Possibly, the greatest contribution of
QTL mapping to plant breeding will be the basic understanding
of the genetic architecture of quantitative traits, thereby relating
specific genetic loci with the biological mechanisms associated
with desirable phenotypes. Intensively managed crop systems
are normally dependent on nitrogen input to maximize yield
potential. Improvements in NUE in crop plants may support the
development of cropping systems that are more economically
efficient and environment friendly.

Molecular approaches for identification of N-respon-
sive genes and new biomarkers for NUE

Efforts to enhance NUE by individually overexpressing some
of the proteins and enzymes responsible for the uptake and
assimilation of nitrate in transgenic plants have failed. Since, the
levels of carbon and nitrogen metabolites mutually influence
each other, implying the intimate link between carbon and nitro-
gen metabolism (Yanagisawa et al. 2004). Therefore, modula-
tion of carbon skeleton production might be an alternate
approach to improve nitrogen assimilation in plants. However,
because a number of enzymes are involved in carbon skeleton
production, it is not practical to intensify the pathway supplying
carbon skeletons by the transfer of individual genes for respec-
tive enzymes. The signal transduction pathways and the regula-
tory elements that function to regulate the genes involved in the
N uptake and assimilation pathways are yet to be identified. The
various modern molecular techniques to validate the cause and
effect of candidate genes, i.e. genes involved in NUE include
DDRT-PCR, substractive hybridization, differential display,
microarrays, knock out, and RNAi. Several studies of plant N-
responses based on microarray gene expression profiling has
been done. Wang et al. (2000) studied the response of seedlings
grown on ammonium to the addition of low or high levels of
nitrate. They used the Arabidopsis GEM1 microarrays, which
contained 7,942 cDNA clones corresponding to 5,524 unique
genes, and identified 25 and 49 N-responsive genes to low or
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high nitrate induction, respectively. Subsequently, Wang et al.
2003 used the Arabidopsis whole-genome Affymetrix ATH1
microarray containing 22,626 genes, to study the addition of the
low level of nitrate to discover more N-responsive genes.
Scheible et al. 1997 also used the ATH1 microarray combined
with real-time RT-PCR of > 1,400 transcription factor genes to
identify genes affected by N-deprivation or N-induction after 30
min or 3 h from N-starved seedlings. Since C and N metabolism
are very closely linked and tightly regulated (Coruzzi and Bush
2001; Coruzzi and Zhou 2001). Price et al. (2004) used the
ATH1 microarray to identify the individual contributions of
nitrogen, sugar, and nitrogen plus sugar on global gene expres-
sion. Recently, Lian et al. 2006 reported expression profiles of
10,422 genes at an early stage of low N stress in rice seedling.
So far, these studies have provided valuable insights into N
response and its linkage to other biological pathways. 

In terms of finding a global target for manipulation of nitro-
gen use efficiency (NUE), recent studies revealed that Dof
(DNA binding with one finger only) transcription factor acts as
master regulator in the expression of photosynthetic genes and
thereby improving nitrogen assimilation of crop plants
(Yanagisawa and Sheen 1998; Yanagisawa and Tetuya 2004).
The potential of the master regulator has been visualized for
enhancing the biomass and in turn yield parameter in cereal
grains. Recent studies of wheat varieties grown under different
nitrogen treatments showed that TaDof 1 expression was up-reg-
ulated in low nitrogen treatment (Kumar et al. 2009). Thus, it
gives us some insight to relate the role of TaDof 1 transcription
factor in controlling the nitrogen use efficiency through higher
expression of Dof1.

The PBF DOF gene of Eleusine coracana first reported based
on in silico studies (Kushwaha et al. 2008) in our lab is now
under study for its temporal and spatial expression analysis so as
to confirm their function related with regulation of seed storage
protein genes.  Therefore, the application of transcription factors
that could selectively enhance whole steps of carbon and nitro-
gen metabolic pathway may be a powerful approach for meta-
bolic engineering of crops having superior characteristics with
improved nitrogen utilization efficiency and improved nutrition-
al quality of grains.

Future prospects
In the recent years, combined molecular, physiological, and

genetic approaches have facilitated significant progress in the
understanding of plant N-economy in agronomic context. These
approaches have also allowed the identification of key elements
involved in the control of NUE molecular cascades, i.e. in rela-
tion to crop productivity and crop yield. The physiological and
agronomical studies on N metabolism have enabled the identifi-
cation of candidate genes putatively involved in both the control
of NUE and yield. Several efforts have been made to enhance
NUE by individually overexpressing genes involved in nitrogen
uptake and assimilation; however such strategy could not
enhance net nitrogen assimilation/amino acid biosynthesis.
Therefore, utilization of transcription factors might be a power-
ful approach for modification of metabolism for generation of

crops having superior characteristics because a single transcrip-
tion factor frequently regulates coordinated expression of a set
of key genes for metabolic pathways. It has been proposed that
the combination of different cis-elements and trans-acting fac-
tors may produce the diversity and specificity required for the
regulation of gene expression. Several such elements have
already been identified and speculation is that some of these ele-
ments act as master switches in the regulation of genes involved
in carbon and nitrogen metabolism. For identification of such
candidate genes, several genomics and proteomics approaches
are in progress these days. Hence, once such master regulator is
identified and validated, their association with NUE trait could
facilitate the screening of genotypes with different NUE, i.e. high
nitrogen responsive and low nitrogen-responsive genotypes.
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