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Abstract Electromyography (EMG) signal is the type

of biomedical signal, which is obtained from the neu-

romuscular activities. Typically, an electromyogram in-

strument is used to capture the EMG signals. These

signals are used to monitor medical abnormalities, ac-

tivation level, and also to analyze the biomechanics of

any animal movements. In this current work, we provide

a short review of EMG signal acquisition and process-

ing techniques. We found that the average efficiency to

capture EMG signals with the current technologies is

around 70 %. Once the signal is captured, the signal

processing algorithms applied decides the recognition

accuracy, with which signals are decoded for their cor-

responding purpose (e.g. moving robotic arm, speech

recognition, gait analysis, etc). The recognition accu-

racy can go as high as 99.8 %. The accuracy with which
the EMG signal is decoded has already crossed 99 %,

and with the upcoming deep learning technology, there

is a scope of improvement to design hardware, that can

efficiently capture EMG signals.
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1 Introduction

Electrical activities and skeletal muscles represent EMG

signals. EMG is used to read myoelectric signals via

electrical measurements. These myoelectric signals are

generated from motor neurons which are a part of the
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Central Nervous System (CNS). EMG signal is due to

neuromuscular activity and hence used to diagnosed

muscle injury, nerve-damage, motor dysfunctioning that

happens due to neurological and muscular disorder. EMG

signals are used to gather simple statistics or can be

even used with advanced deep learning to control com-

plex robotic applications (fig. 1 (a)). Further, in some

cases, EMG signals are used for gait analysis and cap-

turing muscle movements. Fig 2 (b) shows temporal

characteristics of EMG signal. The amplitude is the

positive peak to negative peak voltage. Phase is the

time duration of the initial negative cycle. Rise time is

defined as the time required by a negative and positive

peak. There are 3 turns in the EMG signal. Duration is

defined as the total time between two negative cycles.

Satellite is a small signal followed by the main EMG

signal.

Majorly 2 types of electrodes used to measure these

EMG signals which are needle electrode and surface

electrode. Needle electrodes (fig. 1 (c)) are further clas-

sified into 3 types: mono-polar single electrodes, single-

fiber EMG electrodes and concentric-EMG. Needle elec-

trodes are approximately 1 sq. mm wide. On the other

hand, Surface electrodes (fig. 1 (d)) are 0.5-2.5 cm wide.

However, surface electrodes are non-invasive technology

to measure and capture the EMG signals [2]. Surface

electrodes work on the principle of chemical equilib-

rium detecting the change between surface and skin of

the body through electrolytic conduction. Surface elec-

trodes are of two types: gelled EMG electrode and dry

EMG electrode.

There are 3 main types of electrograms, viz. elec-

troencephalogram (EEG), electrocardiogram (ECG) and

EMG. The advantage to use EMG over ECG and EEG

is that: ECG and EEG signals are below 100 Hz whereas

EMG signals are 5 Hz to 2 kHz. These EMG signals ap-
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Fig. 1 Different EMG sensor electrode position on human body. (a) EMG sensor placed on biceps to move prosthetic arm.
(b) EMG signal placed on the surface of human cheek for speech recognition (c) Needle electrode (d) Surface electrode (e) A
schematic representation for the decomposition of the myoelectric signal [1]. It shows how motor unit action potential trains
(MUAPTs is generated.)

pear in different patterns and difficult to understand. In

this review paper, we explain, how the different types

of EMG signals are acquired and processed. This paper

will be useful for medical and engineering communities

for developing better diagnostics using EMG.

2 Speech recognition based on EMG signal

Many researchers have used EMG for speech recog-

nition [3] (fig. 1 (b)). Their recognition rate achieved

lies between 68 % to 97 % with an average success

rate of 85.4 %. Recently, Meltzner et al. [4] have devel-

oped an innovative method of speech recognition using

EMG signals from the face. They used signal acqui-

sition and processing techniques [5] on surface EMG

(sEMG) [6]. Traditionally, the microphones are used

for speech recognition, but the removal of surrounding

noise is the major task, so alternatively the EMG sen-

sors can now be used for speech recognition. The people

who can’t speak can even convey the message through a

computerized voice using this EMG method. They have

achieved 92.1 % accuracy. Figure 3 (a) shows different

sEMG sensor locations. Sensors 1 and 2 shows submen-

tal neck, Sensor 3 and 4 shows ventromedial neck, sen-

sors 5 and 6 shows supralabial face position and infral-

abial face placement is indicated by 7 and 8. Chan et al.

[7] have worked on the myoelectric signals (fig. 3 (c)) to

augment speech recognition (ASR) with an accuracy of

93 %. Jou et al. [8] have worked on articulatory feature

classification using sEMG and for this, they achieved an

accuracy of 68 %. Lee [9] in his research of EMG-Based

Speech Recognition using hidden Markov models with

global control variables achieved an accuracy of 87 %.

3 Robotic applications based on EMG signal

EMG signals are used as an input in lot of robotic

applications[10,11]. Khan et al. [12] have developed a

portable EMG circuit for a prosthetic arm. This can be

worn on both arms wherever necessary. The portable

EMG circuit has achieved a high fidelity and very good

signal to noise ratio [13]. Fig 2 (a) shows the dc-coupled

amplification circuit that was employed by the group

Khan et al.. It used IC 121 with a gain of 417 to the

signal that was acquired from surface EMG electrodes.

The input signal is directly connected between pin 2

and 3 without any coupling. Filtering capacitors and re-

sistors are connected between pin 1 and pin 8. C1 and

C2 have a value of 100 µF and resistance (R) is 120

Ω. INA121 IC requires 9 volts DC supply connected
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Fig. 2 (a) EMG amplifier circuit with DC coupling. (b) Temporal characteristics of EMG signal. Different positions of fingers
while hand is on steering wheel e.g. index finger open (c), index and middle finger open (d), Ring & little fingers open (e).

between pin 7 and 4, The output is collected across

pin 6 and reference pin 5. Samarawickrama et al. [14]

have analyzed the sEMG w.r.t upper limb and flexion

angle. They have used INA128 amplifier and UAF42 fil-

ter IC. They have classified the signals for the operation

of prosthetic limbs. Jamal [15] has talked about signal

acquisition using surface EMG [16] and circuit design

considerations for robotic prosthesis [17] and explained

all the different types of electrodes used in EMG sig-

nal analysis and how to place them to get the accu-

rate EMG signal. In this work following electrodes are

explained needle electrode, fine wire electrode, surface

EMG electrodes [18].

4 Diagnostics applications based on EMG

signal

Pauk [19] has talked about different techniques for EMG

signal processing. In his work functional evaluation of

20 patients having spastic diplegia was carried out. Spas-

tic diplegia is a form of cerebral palsy (CP) that is

a chronic neuromuscular condition of hypertonia and

spasticity. The demographic data received was studied

carefully and a raw EMG data was made. Witman et

al. [20] have explained the methods to get EMG sig-

nals and analyze it for finger movement. They have

used Myoware (fig. 3 (d)) device with an ATmega 329P

microcontroller. The finger movements were classified

into 5 types. The acquired signals are transmitted using

Bluetooth. For classification, they have used K-nearest

neighbors (K-nn). They achieved an accuracy of 99.1 %

for finger movement. The figure 3 (b) shows electrodes

are placed on the channel slots to ensure that they are

fixed properly and don’t move. The Bluetooth connec-

tion is used, for data transmission from EMG hardware

and received using a computer. Nardo et al. [21] have

developed a statistical analysis tool for EMG signal ac-

quired from Tibialis Anterior (TA) during Gait. During

acceleration, deceleration, and changes in the direction,

the pattern was acquired. They found about 20 % of the

total strides were TA active using the EMG signal.

5 EMG signal acquisition and processing

Pancholi et al. [22] have developed a low-cost EMG sys-

tem for the acquisition of Arm Activities Recognition

(AAR). They found about 80 % of the EMG signals

were captured efficiently and the overall accuracy for

AAR was about 79 %. The EMG data can be collected

from various upper-limb actions, viz. HO (Hand Open),

HC (Hand Closed), WE (Wrist Extension), WF (Wrist

Flexion), SG (Soft Gripping), MG (Medium Gripping)

and HG (Hard Gripping) as shown in figure 4 (b - h).



4 Vidhi Gohel, Ninad Mehendale

Fig. 3 (a) Different positions on the face, where electrodes should be placed to acquire proper EMG signal. (b) Portable
EMG reader. Multiple myoware connected to Arduino and HC05 is used to transfer the data. (c) Face plate with electrodes
for speech recognition. (d) Myoware sensor

Reaz et al. [23] have presented work on various obsta-

cles (e.g. noise) that interrupt EMG signal acquisition.

They also explained how to detect them and classify

them into various forms. Shiavi et al. [24] found that

about 1 % of the detection of motor unit firing is dif-

ficult to capture in EMG signals, especially with wear-

able devices. Pizzolato et al. [25] have compared multi-

ple EMG acquisition setups on hand movement with an

acquisition efficiency of 54 %. Mambrito et al. [26,27]

have described a system for acquiring, processing, and

also decomposing EMG signal to extract as many Motor

Unit Action Potential (MUAPs) (Fig.1 (e)) as possible

with the accuracy of 99.8 %. Khusaba et al. [28] have de-

veloped machine-muscle computer interfaces for driver

distraction reduction. In this work, they found the word

error rate to be 7 %. They proved EMG signals are used

to analyze driver drowsiness and performance. The way

the driver keeps the fingers on steering decides how con-

centrated the driver is while driving. Fig 2 (c),(d),(e)

shows different classes considered in the fingers pressure

based experiment [29].

These positions are typical driver’s finger positions

taken by the hand kept on the steering wheel. Fig 2 (c)

shows index finger open. Fig 2 (d) index and middle

finger open and (e) shows Ring & little fingers open.

Gijsberts et al. [30] have developed the novel move-

ment error rate for the evaluation of machine learning

methods. These methods were tested on sEMG-based

hand movement signal classification and found the ef-

fectiveness of signal capture is around 60 % and the

accuracy of signal recognition is about 82 %. Milose-

vic et al. [31] have presented work regarding challenges

that are related to design issues such as electrodes and

complexity and constraints of the processing. They have

tested EMG signal recognition with 3 datasets (viz. NI-

NAPRO, UNIBO, Cerebro). It was found that accuracy

was 76.3 % for NINAPRO (All), 89.8 % for NINAPRO

(Reduced), 88.9% for UNIBO, and 89.2 % for Cerebro.

6 Analysis and Discussion

For analysis purpose, we have taken multiple literature

papers and found out their capture efficiency and recog-

nition accuracy [35]. Recognition accuracy is defined

as the ability to correctly classify [36] the action re-

quired and action predicted by EMG signal decoding.

While EMG capture efficiency is defined by the abil-

ity to accurately capture the EMG signals with respect

to standard Electromyogram. As per table 1, we found

that the recognition accuracy ranges from 68 % to 99.8

%. The majority of the work reported in literature we
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Fig. 4 (a) Block diagram of EMG based Automatic speech recognition (ASR) system. The upper of block diagram shows
the offline (training) procedure. The lower part of the block diagram shows an online (recognition) procedure. Various arm
positions (b) Wrist Extension (c) Wrist Flexion (d) Hand Open (e) Hand Close (f) Soft Gripping (g) Medium Gripping (h)
Hard Gripping

Recognition Accuracy (%) Capture Efficiency (%)
Meltzner et al. [4] 92.1 –

Gijsberts et al. [30] 82 60
Atzori et al. [32] – 70
Chan et al. [7] 93 –
Betts et al. [33] 74 –

Jou et al. [8] 68 –
Lee et al. [9] 87 –

Pizzolato et al. [25] – 54
Benatti et al. [34] 89.2 –

Milosevic et al. [31] 89.8 –
Shiavi et al.[24] 99 –

Mambrito et al. [26] 99.8 –
Pancholi et al. [22] 78.85 80
Witman et al. [20] 99.1 –

Khushaba et al. [28] 93 –

Table 1 Comparison of different EMG systems with respect to the efficiency of EMG capture and accuracy of recognition.
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found that recognition accuracy is more than 90 %.

Hence there is a slight scope of improvement in recog-

nition accuracy. The captured efficiency of EMG signals

is considerably low and lies in the range of 50 % to 80

%. Hence there is a large scope of improvement in de-

signing proper EMG signal acquisition hardware with

minimal noise.

Design guidelines for EMG system

1. For portable EMG systems, myoware is the best sen-

sor available in the market.

2. Needle electrodes gives equivalent accuracy to the

surface electrodes, hence user should always go for

surface electrode type EMG reader.

3. Surface electrodes are noninvasive and hence must

be preferred always.

4. For accurate results, myoware sensors are preferred

over low-cost sensors.

5. One can also take the EMG signals while bending

the finger to find the sensitivity of the system.

6. Speech recognition is more precise and very conve-

nient using EMG for the deaf and dumb person.

7. To acquire the EMG signal of the limbs, the most

suitable place is to take the signal from the back

muscle, i.e. behind tibia bone.

7 Conclusion

EMG signals are widely used in robotics to develop

prosthetic arms and legs. They are widely used for speech

recognition as well. Literature has proven proper EMG

signals can be read through non-invasive surface elec-

trodes, hence it is highly recommended to used sur-

face electrodes over traditional needle electrodes. Noise

is still a big issue that affects capturing efficiency of

EMG signal. But with proper filtering, captured signal

can improve up to 40 dB. The Machine learning and

deep learning approaches in EMG signal analysis is the

next big thing that can take recognition accuracy more

than 99 %. For EMG signals in medical analysis appli-

cations, athletes and trainers can use EMG as a proper

feedback signal and the level of coaching can be taken

to a whole different level. EMG is one of the most im-

portant and easy to capture the biomedical signal, and

a lot of patients with a disability can be profited from

its acquisition and recognition.
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