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Abstract—Compressive sensing (CS) is a novel method for 
channel estimation. The recently introduced principle and the 
methodology of compressed sensing allow the efficient 
reconstruction of sparse signals of a very limited number of 
measurements. CS has gained a fast growing interest in applied 
mathematics. We consider the channel estimation in mobile 
environment using different methods. We identified an optimized 
method for compressive sensing in a mobile environment after an 
investigation of Orthogonal Matching Pursuit (OMP) and Delay-
Doppler sparsity with reduced pilots for higher spectral 
efficiency. We demonstrated simulation results for 4- QAM and 
16- QAM with the parameters of Least Square Estimation (LSE) 
and CS. Our simulation results show that the Delay-Doppler 
Sparsity achieved good spectral efficiency along with less 
probability of error.  

Keywords— Compressive sensing, OFDM, Delay-Doppler 
sparsity,  Orthogonal Matching Pursuit  

I. INTRODUCTION 
In a wireless environment, signal refracts diffracts and 

scatters from nearby objects and hence at the receiver, 
different signals which are attenuated, delayed and phase 
shifted are received. The channel state information (CSI) has 
an effect on overall system performance. The channel 
estimation is very important to estimate the parameters of 
channel model which is abstracted from the real time 
multipath propagation. OFDM is used in various digital 
services such as 4G, DVB, DSL, Internet access,  DAB etc. 

In [1] CS is applied to pilot based estimation in a  highly 
mobile environment and channel estimation exploits a channel 
Delay-Doppler sparsity to reduce the number of pilots. In [2] 
the optimization considers the character of the channel and 
uses the delay of the channel to optimize the algorithm of 
OMP.  

Conventional approaches to sampling signals or images 
follow Shannon’s Sampling theorem. This principle requires 
all observed signals for reconstruction of the transmitted 
signal. Newly developed compressive sensing requires fewer 
samples to reconstruct the signal as compared to Nyquist  
sampling theorem, if the signal is compressed or sparse in 
some domain. The method of CS can  reduce the dimensions 
of the observation matrix and the use of this reduced matrix 
for the reconstruction of the original signal with high 

probability. Sparsity and incoherence are the basic  principles  
behind compressive sensing [3]. When compared with 
conventional methods of channel estimation, Compressive 
sensing can reach the same performance with fewer pilot 
signals to represent same signals.  

   There are various methods to reduce the number of pilots 
using compressive sensing technique. In this paper we 
compared Delay-Doppler sparsity and orthogonal matching 
pursuit, to decide optimized method for guaranteed recovery 
of the signal. 

Delay-Doppler Sparsity: - From Delay-Doppler Sparsity 
we can calculate energy bounds. These bounds allow us to 
choose NA where NA is the number of non-zero samples that 
guarantee prescribed approximation quality. 

Orthogonal Matching Pursuit: - It is a sparse 
approximation method which involves finding the basis of 
matching projections of multidimensional data over a 
complete dictionary.  

This paper is organized as follows: - Section II describes 
some basic facts about compressive sensing. Section III 
describes multicarrier system model channel. Section IV 
describes Delay-Doppler sparsity. In section V, OMP 
algorithm is reviewed. Comparison and simulation results are 
given in Section VI and Section VII gives concluding remarks.   

II. REVIEW OF COMPRESSIVE SENSING 
Compressive sensing or CS is a novel sampling/ sensing 

paradigm that does not follow common wisdom in the data 
acquisition. CS theory shows that one can recover certain 
signal and images from fewer samples / measurements.  

 Fig. 1 The framework for compressed sensing 
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The sampling of a signal is a conversion of analog signal 
to digital information. The requirement of more information 
causes large pressure on the sampling of a signal. The 
transport of signal and storage of the signal also burdens the 
system. Compressive sensing provides a solution to mitigate 
this pressure. 

CS relies on two principles, Sparsity which recovers the 
original signal of interest and incoherence which recovers the 
sensing modality. 

Sparsity: - Sparsity implies that continuous time signal 
contains information much smaller than suggested by its 
bandwidth. Hence CS exploits the facts that many natural 
signals are compressible when they are represented with 
proper basis. CS provides a constructive way in exploiting this 
sparsity to reduce the number of pilots and hence increase 
spectral efficiency. 

Incoherence: - We know that, time and frequency domain 
signals are dual incoherent. This expresses the idea that 
objects having sparse representation  must be spread out in the 
domain in which they are acquired e.g. direct  or spike signal 
in the time domain has a wide spectrum in frequency domain. 
Incoherence represents sampling waveform in a very dense 
form of Ψ where Ψ is the matrix for transformed domain . CS 
is a very simple and efficient signal acquisition protocol which 
samples the signal in independent fashion at a low rate and 
later uses computational power for reconstruction. As they are 
relatively few in number, these samples appear to be an 
incomplete set of measurements when compared to the set of 
samples using Nyquist criteria, but they are sufficient for 
reconstruction of the original signal. 

III MULTICARRIER SYSTEM MODEL 

 
Fig.2: Base-band OFDM system 

 
Above figure shows Orthogonal Frequency Division 

Multiplexing (OFDM) model for the multipath wireless 
channel. OFDM system can be characterized as a linear time- 
variant system consisting of propagation delay and Doppler 
Effect. 

When we consider a single OFDM symbol, it can be 
represented as  

 
Where X(n) are transmitted symbols and  

           X(k) are FFT symbols of  X(n). 

assuming k is greater than cyclic prefix and k is less than (N-
1), where N is the number of subcarriers. Here we consider the 
multipath channel consisting of P propagation paths and these 
propagation paths have delays τp  [2]. This multipath channel 
can be expressed as,  

 
      Here np is the attenuation of the initial phase of path P and 

τp is a delay of channel. In discrete case, the equation (2) 
can be given as  

 
When signal passes through the AWGN channel 

continuous time signal received at the end of the multipath 
channel is given by, 

 
 

Where S(t)=input signal 

h (t, τ )= Channel’s impulse response 

z (t) = Channel noise 

In discrete time, the channel output is given as  

 
 

Where z(n) = Discrete time noise, it is zero mean white 
complex Gaussian Noise. 

Here we modeled system channel as a multichannel 
modulator and demodulator. Using above equations and 
neglecting noise in a highly mobile environment  

 
 
for l = 0,…….,L-1 and K = 0,………K-1. Here zl,k =<z,ϒl,k> 
are the system channel coefficients. Hl,k can easily be 
expressed in terms of h[n,m] and ϒ[n]. 
 We will need a “Delay–Doppler domain expression” 
of the channel coefficients Hl,k. Let us assume that the 
received pulse ϒ[n] is zero outside [0, Lϒ]. To compute xl,k  
we have  
 

Authorized licensed use limited to: K J Somaiya College of Engineering - MUMBAI. Downloaded on July 02,2021 at 06:20:00 UTC from IEEE Xplore.  Restrictions apply. 



 
 
for l=0, ….,L-1, r[n] must be known for n = 0, ….,Nr-1 where 
Nr = (L-1)N + Lϒ +1. In this interval we can express r[n] as a 
discrete Delay-Doppler spreading function as given in eq.(5) 
and also as continuous time signal as given in eq. (4).  We 
obtained the system channel relation Hl,k expressed as    

 
 
Where 

 
 
Where the ambiguity function is given by  

 
Using the approximation Nr = LN, we can write Delay- 
Doppler sparsity as given in eq. (8) which is a two 
dimensional discrete fourier transform  
 

 
 
above equation with “pre-aliased” version of F[m,i] can be 
given as   

 
 

IV DELAY-DOPPLER SPARSITY 
 

Delay Doppler Sparsity is related by ambiguity function which 
is a two-dimensional function of time delay and Doppler 
frequency X(τ,f). It shows the distortion of return pulse due to 
receiver match filter which is the effect of Doppler Shift. 
Ambiguity function is suitable to represent propagation delay 
and Doppler relationship of wide band signals. For a given 
complex baseband pulse, S(t) is the narrow band ambiguity 
function is given by  
 

 
 
Where 

*is complex conjugate 
i is an imaginary unit 

When there is no Doppler shift i.e. f = 0 above equation 
reduces to auto-correlation of S(t)   

In [1], by using above ambiguity function, Delay-Doppler 
sparsity equation reduces the channel response for mobile 
radio channel and it is given as,  

 
  Where vp is frequency shift for P propagation paths 

            np  is attenuation  

Above equation gives the relation between τp Doppler 
frequency shift vp 

In discrete time, channel impulse response can be given as  

 
 
Finally Delay-Doppler spreading function is obtained as  

 
 

Where  

 
 

Here we will consider  ˄p[m,i] as N˄  - sparse, with an 
approximately chosen number N˄  of non zero samples , The 
energy bound in [1] allows us, N˄ such that prescribed 
approximation quality can be guaranteed. 

 

V ORTHOGONAL MATCHING PURSUIT 
ALGORITHM 

Matching Pursuit: - It is a greedy iterative algorithm for 
approximatively solving l0 pseudo- norm problems where l0 
norm can be given as 

 
 
is a pseudo-norm l0 which counts the number of non zero 
component of α.  
 Matching pursuit works by finding a basis vector in 
D that maximizes the correlation with the residual. Again 
compute the residual & coefficients. We project the residual 
on all atoms in the dictionary. The drawback of matching 
pursuit algorithm is that it picks the same atoms multiple 
times. The OMP gives the solution for this problem. OMP is 
modified version of  MP except that an atom picked at once 
does not pick again. For this purpose, algorithm maintains an 
active set of atoms which are already picked. For every 
iteration a new atom gets added with the existing atom.   
 
OMP Algorithm: In OMP the residual is always orthogonal 
to the atom already selected. This means that the same atom 
can never selected twice and result in convergence for a d- 

Authorized licensed use limited to: K J Somaiya College of Engineering - MUMBAI. Downloaded on July 02,2021 at 06:20:00 UTC from IEEE Xplore.  Restrictions apply. 



dimensional vector after at most d steps. By using Gram-
Schmidt procedure to find an orthonormal set of atoms. 
The OMP algorithm is  
1: Denote your signal by f, initialize the residual R0f= f. 
2: Select the atom that maximizes the absolute value of the 
inner product with R0f= f. Denote that atom by ϕp. 
3: Form a matrix ϕ with previously selected atoms as the 
columns. Define orthogonal projection operator onto the span 
of columns ϕ. 
P= ϕ (ϕ * ϕ)-I ϕ * 
Where ϕ= dictionary of atoms as NxM matrix with M> N 
4: Apply the orthogonal projection operator to the residual. 
5: Update the residual  
Rm+1f= (I-P)Rmf 
Where I is the identity matrix. 
Main attribute of OMP algorithm is its stopping structure 
which depends upon the characteristics of noise. 
In noiseless case, Rm+1f = 0 and iteration for the algorithm will 
be stopped. 
      For different values of noise structure different values of  
 Rm+1f will be considered. 

 
VI. COMPARISON BETWEEN OMP ALGORITHM 

FOR MOBILE ENVIRONMENT AND DELAY 
DOPPLER SPARSITY 

 
A.DELAY DOPPLER SPARSITY  
 
In [1] following parameters are considered for simulation: 
1: No. of subcarriers K= 2048 
2: Cyclic Prefix Length (N-K) =512 where N= No. of samples 
3: N=2560 
4: Modulation method=4 QAM 
 
B. OMP METHOD 
In [2] following parameters are considered for simulation: 
1: No. of subcarriers K= 1024 
2: CP length (N-K) =256 
3: N=1280 
4: Modulation Method= 16 QAM 
 
    Using above parameters, for known channel estimation the 
result are shown below, 
 

 
Fig3: Bit Error Rate by using Delay-Doppler Sparsity with 
K=2048 

 
Fig.4:  Bit Error Rate Bit Error Rate by using Delay-Doppler 

Sparsity with K=1024 
 

 
 

Fig.5: Bit error rate by using OMP method 
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1. For the unknown channel estimation, the pilots are 
required and the energy required for transmission of 
signal with pilot is more.   

2. Neglecting above fact, in 4-QAM constellation the 
signal energy Es=2 and location of bits are also far 
from each other, so the probability of error is less. 

3. In 16 QAM constellations the signal energy is 10 and 
the location of bits are also nearer to Euclidean 
distance, so the probability of error is more.   

4. When probability of error is more, there will be 
constraint on the reduction of pilots. 

Optimum pilot signal design is a separate issue which 
enhance the complexity of modulation .Pilot symbols does not 
carry any information about the data, hence the time spend on 
the sending pilot symbol is a time missed for transmitting 
information .For transmission of pilots the power is required 
which is taken away from the data symbols. The location of 
these pilots in the data stream also affect the system 
performance in terms of reliable transmission rate, bit error 
rate or mean square error of the estimator.  

The pilot symbols are needed throughout the transmission so 
that new user can acquire the channel state information (CSI) 
and gain synchronization. This implies that the fixed 
percentage of pilots should be embedded in the data stream. 

 

VII. CONCLUSION 

Based on the recently introduced methods for compressed 
channel estimation, we studied the Delay- Doppler sparsity 
and OMP .Our results demonstrate that the Delay-Doppler 

sparsity is superior to the OMP algorithm under the condition 
of reduced pilots. We observed that while maintaining the 
same data rate, we can achieve less probability of error and 
reduced hardware complexity with Delay-Doppler sparse 
channel estimation.  
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